融合多维语义表示的概率矩阵分解模型
A Probabilistic Matrix Factorization Model Based on Multidimensional Semantic Representation Learning
查看参考文献18篇
文摘
|
协同过滤作为推荐系统核心技术,面临严重的评分数据稀疏性问题.融合物品文本信息可以有效的解决数据稀疏性问题,然而,目前的方法侧重于提取文本的单维特征,忽略了物品语义表示的多维特性.深度挖掘物品内容的多维特性可以更加精细化描述物品的语义信息,有助于提升推荐效果.为此,本文提出基于胶囊网络的概率生成模型.模型利用胶囊网络挖掘文本的多维语义特征,并以正则化方式融入概率矩阵分解框架,建立用户与物品之间的内在关系.实验结果表明本文提出的模型具有更高的评分预测精度. |
其他语种文摘
|
Collaborative filtering, as the core technology of recommendation systems, is currently facing the sparsity problem of rating data. This can be effectively solved through integrating item text information. However,current methods focus on extracting the one-dimensional features of the text,neglecting its multidimensional semantic features. Digging deeply into the multidimensional semantic features of the text can improve the recommendations. To help achieve this goal,a probabilistic matrix factorization model based on multidimensional semantic representation learning is proposed in the present study. The model uses a capsule network to mine the multidimensional semantic features of the text, and then integrates it into the probabilistic matrix decomposition framework using the regularization method to reveal hidden features linking users and items. Experimental results show that the proposed model has higher prediction accuracy. |
来源
|
电子学报
,2019,47(9):1848-1854 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.09.005
|
关键词
|
协同过滤
;
概率矩阵分解
;
胶囊网络
;
多维语义特征
;
正则化
;
混合推荐
|
地址
|
北京邮电大学网络技术研究院, 北京, 100876
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
北京市自然科学基金
;
国家教育部科学技术研究重点项目
|
文献收藏号
|
CSCD:6668628
|
参考文献 共
18
共1页
|
1.
Ma H. Sorec: social recommendation using probabilistic matrix factorization.
Proceedings of the 17th ACM Conference on Information and Knowledge Management,2008:931-940
|
CSCD被引
78
次
|
|
|
|
2.
陈克寒. 基于用户聚类的异构社交网络推荐算法.
计算机学报,2013,36(2):349-359
|
CSCD被引
53
次
|
|
|
|
3.
Melville P. Content-boosted collaborative filtering for improved recommendations.
Proceeding Eighteenth National Conference on Artificial Intelligence,2002:187-192
|
CSCD被引
1
次
|
|
|
|
4.
黄贤英. 基于改进协同过滤算法的个性化新闻推荐技术.
四川大学学报(自然科学版),2018,55(1):49-55
|
CSCD被引
7
次
|
|
|
|
5.
Blei D M. Latent dirichletallocation.
Journal of Machine Learning Research,2003,3:993-1022
|
CSCD被引
1337
次
|
|
|
|
6.
Hsieh C K. Collaborative metric learning.
Proceedings of the 26th International Conference on World Wide Web,2017:193-201
|
CSCD被引
7
次
|
|
|
|
7.
Vincent P. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research,2010,11:3371-3408
|
CSCD被引
395
次
|
|
|
|
8.
Kim D. Convolutional matrix factorization for document context-aware recommendation.
Proceedings of the 10th ACM Conference on Recommender Systems,2016:233-240
|
CSCD被引
46
次
|
|
|
|
9.
Bansal T. Ask the gru: Multitask learning for deep text recommendations.
Proceedings of the 10th ACM Conference on Recommender Systems,2016:107-114
|
CSCD被引
7
次
|
|
|
|
10.
Li Z. Weakly supervised deep matrix factorization for social image understanding.
IEEE Transactions on Image Processing,2017,26(1):276-288
|
CSCD被引
3
次
|
|
|
|
11.
Li Z. Deep collaborative embedding for social image understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,1(4):1-7
|
CSCD被引
2
次
|
|
|
|
12.
Liao J. Multi-context integrated deep neural network model for next location prediction.
IEEE Access,2018(6):21980-21990
|
CSCD被引
1
次
|
|
|
|
13.
Sabour S. Dynamic routing between capsules.
Advances in Neural Information Processing Systems,2017:3856-3866
|
CSCD被引
38
次
|
|
|
|
14.
Mnih A. Probabilistic matrix factorization.
Advances in Neural Information Processing Systems,2008:1257-1264
|
CSCD被引
27
次
|
|
|
|
15.
Schein A I. Methods and metrics for cold-start recommendations.
Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,2002:253-260
|
CSCD被引
17
次
|
|
|
|
16.
Zhou Y. Large-scale parallel collaborative filtering for the netflix prize.
International Conference on Algorithmic Applications in Management,2008:337-348
|
CSCD被引
2
次
|
|
|
|
17.
Wang C. Collaborative topic modeling for recommending scientific articles.
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2011:448-456
|
CSCD被引
48
次
|
|
|
|
18.
Wang H. Collaborative deep learning for recommender systems.
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2015:1235-1244
|
CSCD被引
36
次
|
|
|
|
|