岩溶水系统对大气CO2的潜在影响——基于热力学的研究
Geochemistry of Water System in Karst Regions and the Atmospheric CO2 :Thermodynamic Studies
查看参考文献33篇
文摘
|
认识不同条件下岩溶水释放或吸收CO2的反应过程是研究碳酸盐岩对碳循环响应的前提和基础.本文从吉布斯自由能的热力学原理出发,对全球不同岩溶地区162组岩溶水(河水、溪水、湖水等)进行了热力学研究,结果显示:1) 河水、溪水、湖水和洞穴滴水等岩溶水所处的环境因方解石矿物沉积而释放CO2成为大气CO2一个潜在的源;2) 地下水在所处的环境下由于方解石的溶解而吸收CO2,成为大气CO2一个潜在的汇;3) 少数出露点的泉水所处的环境既可发生方解石的溶解而吸收CO2,成为大气CO2的潜在汇,也可发生方解石的沉积而释放CO2,成为大气CO2的潜在源;4) 在洪水期,泉水的水化学特征变化并未导致对大气CO2潜在贡献在源汇之间的跨跃性转变.162组岩溶水数据中,所有河水与溪水皆无一例外地在释放CO2.结果表明,从吉布斯自由能的热力学原理出发,研究岩溶水系统对大气CO2潜在源汇的贡献,没有条件约束,是一种较好的途径. |
其他语种文摘
|
It is believed that to study the CO2 releasing or absorbing processes of the Karst water corresponding to the dissolution or formation of carbonate in various environments is the precondition and base for studying carbon cycling effect caused by the dissolution or formation of carbonate. By using Gibbs free energy thermodynamic theory, 162 batches of data for waters sampled from rivers, streams, lakesf springs, underground rivers etc. in different Karst regions were collected for thermodynamic study. Our results have revealed that, 1) The waters in rivers, streams, lakes, and dripping waters in caves could release COZ to atmosphere clue to the deposition of calcite. They could be potential sources for CO2 in atmosphere! 2) The underground waters could absorb CO2 due to the dissolution of carbonate. They could be sinks of CO2 indirectly; 3) The spring waters could not only absorb CO2 due to carbonate dissolution but also release CO2 due to carbonate deposition. They could be sinks or sources of CO2 indirectly; 4) the variation of hydrochemical characters of spring waters in flooding period does not change their original properties as sinks or sources of CO2 dramatically. It is indicated that all river waters and spring waters are releasing CO2 into atmosphere, based on 162 batches of data. The results show that the Gibbs free energy thermodynamic theory could be used to study if the water in Karst areas could be the potential sources or sinks of CO2 in atmosphere without any limitation. |
来源
|
矿物岩石地球化学通报
,2006,25(3):226-235 【扩展库】
|
关键词
|
碳酸盐岩
;
无机碳库
;
CO2源
;
CO2汇
;
热力学
;
大气化学
;
水化学
|
地址
|
中国科学院,地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
中国科学院创新团队国际合作伙伴计划
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:2412355
|
参考文献 共
33
共2页
|
1.
张永祥. 北方半旱区不同岩溶系统的碳循环研究[J].
中国岩溶,1997,16(4):296-303
|
CSCD被引
4
次
|
|
|
|
2.
徐胜友. 我国岩溶作用与大气温室气体CO↓2源汇关系的初步估算.
科学通报,1997,42(9):953-956
|
CSCD被引
47
次
|
|
|
|
3.
Liu Zaihua. Geochemical features of the geothermal CO2-water-carbonate rock system and analysis on its CO2 sources[J].
Science in China. Series D, Earth Sciences (in English),2000,43(6):569-576
|
CSCD被引
4
次
|
|
|
|
4.
李彬. 岩溶区碳循环与大气CO2的源汇关系--以贵州岩溶区为例[J].
中国岩溶,1996,15(1/2):1-14
|
CSCD被引
1
次
|
|
|
|
5.
刘再华. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析.
中国岩溶,2005,24(1):1-14
|
CSCD被引
46
次
|
|
|
|
6.
李西腾. 喀斯特地区碳酸酐酶与环境的关系及意义.
矿物岩石地球化学通报,2005,24(3):252-257
|
CSCD被引
7
次
|
|
|
|
7.
Dreybrodt W. Field measurements of precipitation rates in comparison to theoretical predictions[J].
Chemistry Geology,1992,97:285-294
|
CSCD被引
15
次
|
|
|
|
8.
Herman J S. CO2 outgassing and calcite precipitation in Falling Spring Creek.
Chemistry Geology,1987,62:251-262
|
CSCD被引
9
次
|
|
|
|
9.
Plummer L N. WATEQF-A FORTRAN IV version of WATEQ.
U.S.Geology Survey,Water-Resources Investigation,1976(76/13):63
|
CSCD被引
1
次
|
|
|
|
10.
Kharaka Y K. SOLMINEQ.
U.S.Geology,Survey,Water-Resources,Investigation,1988:207
|
CSCD被引
1
次
|
|
|
|
11.
Parkhurst D L. PHRE-EQE-A computer program for geochemical calculations[R].
U.S.Geological Survey,Water-Resources Investigations,1980(80/96):193
|
CSCD被引
1
次
|
|
|
|
12.
Dreher G B. Elements of computer-assisted thermodynamic chemical equilibrium modeling as applied to waste treatment at coal mines[J/OL].
http://www.mcrcc.osmre.gov/PDF/Forums/CCB/6-2.pdf,1996:173-181
|
CSCD被引
1
次
|
|
|
|
13.
Mattigod S V. Applications and future trends[Z].
Chemical Equilibrium and Reaction Models,1995
|
CSCD被引
1
次
|
|
|
|
14.
Thomsen K. Correlation and prediction of thermal properties and phase behavior for a class of aqueous electrolyte systems[J].
Chem.Eng.Sci,1996,51(14):3675-3683
|
CSCD被引
8
次
|
|
|
|
15.
殷辉安. 岩石学相平衡[M].
岩石学相平衡,1988:83-84
|
CSCD被引
1
次
|
|
|
|
16.
Houghton G. Compressibility.
Chem.Eng.Sci,1957,6:132-137
|
CSCD被引
1
次
|
|
|
|
17.
Helgeson H C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.
Am.J.Sci,1976,276:97-240
|
CSCD被引
3
次
|
|
|
|
18.
Shock E L. Correlation algorithms for ionic species and equation of state predictions to 5 kbar and 1000 C[J].
Geochim.Cosmochim.Acta,1988,52:2009-2036
|
CSCD被引
19
次
|
|
|
|
19.
Helgeson H C. Theoretical prediction of the thermodynamic behavior of aqueouselectrolytes at high pressures and temperatures.
Am.J.Sci,1974,274:1089-1198
|
CSCD被引
6
次
|
|
|
|
20.
Helgeson H C. Summary and critique of the thermodynamic properties of rock-forming minerals[J].
Am.J.Sci,1978,278:229
|
CSCD被引
4
次
|
|
|
|
|