岩体强度对牙轮单齿作用下破碎坑的体积及形态影响研究
Influence of rock mass strength on volume and shape of fragmental pit generated by a single tooth of roller bit
查看参考文献22篇
文摘
|
借助连续-非连续单元法(CDEM),对牙轮钻单齿压入破岩的机制进行了探讨,研究了加载过程中破碎体积及破碎坑的演化规律,分析了岩体凝聚力和内摩擦角对单齿破岩体积及破碎坑形态的影响。数值计算结果表明,破碎坑基本上呈半椭球体,其宽深比仅受内摩擦角控制,随着内摩擦角的增加,破碎坑的宽深比减小。破碎坑的宽度、深度及单齿破岩体积可用齿压F、钻齿半径r、凝聚力c及内摩擦角j表征,基于数值计算结果给出了破碎坑的宽度、深度及单齿破岩体积定量表述的公式;基于相关理论公式,考虑各个同时与岩石接触的几个齿轮对岩石的损伤是相互影响的,引入单齿破岩体积的修正系数,建立了牙轮钻的工作参数(轴压、转速、进尺速度等)与岩体凝聚力及内摩擦角的函数关系。在鞍千矿南采区进行了牙轮钻随钻测试的现场试验,获得了不同岩性下的单齿破岩体积,并就近取样测试了岩体的凝聚力及内摩擦角。当修正系数取0.363时,现场测试结果与基于数值计算得到的单齿破岩体积基本一致,从而证明了数值计算及相关理论推导的正确性。研究成果可以为岩体强度的动态测试提供依据。 |
其他语种文摘
|
Based on a continuous-discontinuous element method(CDEM), this paper is to discuss fracture mechanism of rocks under compressive loading applied by a single tooth of roller bit. The CEDM is then applied to investigate the fracture evolution process of rock mass under compressive loading, and to analyze the effect of cohesion, internal friction angle on rock fragmental volume and the patterns of fragmental pit. Numerical results show that the shape of fragmental pit is basically a semi-ellipsoid and the ratio of width to depth of the fragmental pit is only affected by the internal friction angle. With the increase of internal friction angle, the ratio of width to depth decreases gradually. The width and depth of fragmental pit and the volume of fragment can be described by the single tooth pressure F, tooth radius r, cohesion c and internal friction angle j. By considering the rock damage influenced by several bits which are in contact with rock simultaneously, the correction coefficient of single tooth fragmental volume is introduced. Then the relationship between operating parameters of roller bit(i.e., axial force of drill pipe, rotational speed and drilling speed) and rock mass strength(i.e., cohesion and internal friction angle) is established. Field experiments are conducted at the south mining area of Anqian mine, and the rock fragmental volumes of different rock properties are obtained. The corresponding cohesive strength and internal friction angle of the rock mass are obtained by laboratory tests. When the correction factor is 0.363, the field testing results coincide well with the theoretical results, which demonstrates the validity of numerical analysis and formula derivation. The results will be used for the field test of dynamic strength of rock mass. |
来源
|
岩土力学
,2016,37(10):2971-2978 【核心库】
|
DOI
|
10.16285/j.rsm.2016.10.031
|
关键词
|
单齿破岩体积
;
破岩机制
;
连续-非连续单元法(CDEM)
;
钻进速度
;
岩体强度
;
破碎坑形态
|
地址
|
1.
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
2.
广东宏大爆破股份有限公司, 广东, 广州, 510623
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-7598 |
学科
|
建筑科学 |
基金
|
广东宏大爆破股份有限公司"基于数字模拟的露天爆破设计软件"研发项目资助
;
中国科学院战略性先导科技专项
;
国家973计划
|
文献收藏号
|
CSCD:5809453
|
参考文献 共
22
共2页
|
1.
王清峰. 牙轮钻头单牙轮的破岩仿真研究.
振动与冲击,2010,29(10):108-112
|
CSCD被引
16
次
|
|
|
|
2.
杨岳峰. 冲击作用下的压头破岩机制研究.
岩土力学,2013,34(6):1775-1785
|
CSCD被引
8
次
|
|
|
|
3.
Lawn B R. Microfracture beneath point indentations in brittle solids.
Journal of Materials Science,1975,10(1):113-122
|
CSCD被引
30
次
|
|
|
|
4.
Lindqvist P A. Stress fields and subsurface crack propagation of single and multiple rock indentation and disc cutting.
Rock Mechanics & Rock Engineering,1984,17(2):97-112
|
CSCD被引
6
次
|
|
|
|
5.
Ostojic P. A review of indentation fracture theory: its development, principles and limitations.
International Journal of Fracture,1987,33(4):297-312
|
CSCD被引
6
次
|
|
|
|
6.
Hertz H. On the contact of elastic solids.
Journal fur die Reine und Angewandte Mathematic,1988,92:156-228
|
CSCD被引
3
次
|
|
|
|
7.
刘清友. 盘式单牙轮钻头破岩机理仿真研究.
四川大学学报(工程科学版),2003,35(5):12-15
|
CSCD被引
7
次
|
|
|
|
8.
赵伏军. 动静载荷耦合作用下岩石破碎理论分析及试验研究.
岩石力学与工程学报,2005,24(8):1315-1320
|
CSCD被引
20
次
|
|
|
|
9.
Liu H Y. Numerical simulation of the rock fragmentation process induced by indenters.
International Journal of Rock Mechanics and Mining Sciences,2002,39(4):491-505
|
CSCD被引
50
次
|
|
|
|
10.
况雨春. 三牙轮钻头破岩过程计算机仿真模型.
岩土力学,2009,30(增刊):235-238
|
CSCD被引
6
次
|
|
|
|
11.
马德坤.
牙轮钻头工作力学,2009
|
CSCD被引
5
次
|
|
|
|
12.
石祥超. 加载速度对单齿压入破岩过程的影响.
石油钻探技术,2010,38(4):19-21
|
CSCD被引
3
次
|
|
|
|
13.
Su O. Numerical simulation of rock cutting using the discrete element method.
International Journal of Rock Mechanics and Mining Sciences,2011,48(3):434-442
|
CSCD被引
50
次
|
|
|
|
14.
祝效华. 牙轮钻头动力学特性仿真研究.
石油学报,2004,25(4):96-100
|
CSCD被引
12
次
|
|
|
|
15.
廖志毅. 动静组合作用下刀具破岩机制数值分析.
岩土力学,2013,34(9):2682-2698
|
CSCD被引
5
次
|
|
|
|
16.
蔡灿. 单齿冲击作用下破岩机制分析.
岩土力学,2015,36(6):1659-1666
|
CSCD被引
13
次
|
|
|
|
17.
Li S H. Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method.
Rock Mechanics and Rock Engineering,2007,40(4):331-348
|
CSCD被引
20
次
|
|
|
|
18.
Feng C. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide.
Journal of Rock Mechanics and Geotechnical Engineering,2014,6(1):26-35
|
CSCD被引
31
次
|
|
|
|
19.
李世海. 用于描述地质体块体颗粒的连续及非连续计算模型--CDEM最新进展.
颗粒材料计算力学研究进展,2012:21-23
|
CSCD被引
2
次
|
|
|
|
20.
Li S H. A new numerical method for DEM-block and particle model.
International Journal of Rock Mechanics and Mining Sciences,2004,41(3):436-440
|
CSCD被引
26
次
|
|
|
|
|