颗粒增强金属基复合材料的强化机理研究现状
Research Status on Strengthening Mechanism of Particle-reinforced Metal Matrix Composites
查看参考文献65篇
文摘
|
本文总结了较低颗粒体积分数(≤14%)的颗粒增强金属基复合材料中主要存在的Orowan强化应力、位错强化应力、颗粒承载强化应力和其他强化应力的理论研究现状,以及各项强化应力之间的耦合关系。得出以下结论:(1)降低颗粒尺寸、提高颗粒体积分数和提高颗粒分布均匀性能够同时提高Orowan强化应力和位错强化应力,提高颗粒体积分数还能够提高颗粒承载强化应力;(2)采用微观非均匀分布的颗粒包围金属基体的材料设计方法,通过提高颗粒承载强化应力和提供塑性形变区,能够进一步提高复合材料屈服强度和延展性;(3)晶界强化效应和晶格摩擦应力对复合材料屈服强度也有贡献,但较少通过增强这两项强化效应提高复合材料屈服强度,通常可忽略复合材料中的固溶强化效应;(4)各项强化应力的耦合关系存在线性叠加、乘积叠加和均方根叠加3种形式。线性叠加和乘积叠加适用于纳米颗粒增强金属基复合材料,其中乘积叠加关系应用效果更好;均方根叠加主要应用于微米级颗粒增强金属基复合材料。 |
其他语种文摘
|
The research status on theoretic models and the coupling relationships of Orowan strengthening, dislocation strengthening,load-bearing effect of the reinforcement strengthening and others strengthening are successfully described in this study for particle-reinforced metal matrix composites (MMCs)with a volume fraction lower than 14%.Some conclusions can be obtained:Orowan strengthening and dislocation strengthening stress can be enhanced by increasing volume fraction,decreasing size of reinforcement and improving homogeneous distribution of reinforcement,load-bearing strengthening stress can also be enhanced by increasing volume fraction;yield strength and ductibility of MMCs can be enhanced much more by increasing load-bearing strengthening stress and plastic deformation region and adopting the material design method of metal matrix surrounded by particles with microstructural inhomogenous distribution;grain boundary strengthening and Peierls-Nabarro stress can also affect the yield strength of MMCs as a part of matrix strengthening,solid solution strengthening can be ignored usually;there are three coupling relationships for the sum strengthening contributions: linear summation,multiplicative combination and the root of the sum of the squares.The linear summation and multiplicative combination can be applied to nanoparticle-reinforced MMCs,the linear summation is generally applicable in the case when there are few factors influencing the strength,the multiplicative combination is the most commonly used method.The root of the sum of the squares is applied to micronparticle-reinforced MMCs. |
来源
|
材料工程
,2018,46(12):28-37 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2016.001214
|
关键词
|
颗粒增强金属基复合材料
;
强化机理
;
Orowan强化
;
位错强化
;
颗粒承载强化
|
地址
|
1.
中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理国家重点实验室, 四川, 绵阳, 621999
2.
中国工程物理研究院, 四川, 绵阳, 621999
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电子技术、通信技术 |
基金
|
中国工程物理研究院双百人才工程基金
|
文献收藏号
|
CSCD:6391314
|
参考文献 共
65
共4页
|
1.
童慧. SiC改性及其在铝基复合材料中的应用.
金属功能材料,2015,22(1):53-60
|
CSCD被引
4
次
|
|
|
|
2.
Luan B F. High strength Al_2O_3p/2024Al composites-effect of particles,subgrains and precipitates.
Materials Science and Technology,2005,21(12):1440-1443
|
CSCD被引
3
次
|
|
|
|
3.
Chen L Y. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.
Nature,2015,528(7583):539-548
|
CSCD被引
63
次
|
|
|
|
4.
Dixit M. Structure-property correlations in Al 7050and Al 7055high-strength aluminum alloys.
Materials Science and Engineering:A,2008,478(1/2):163-172
|
CSCD被引
99
次
|
|
|
|
5.
黄天林.
纳米结构Al-1%Si合金的组织、热稳定性及力学行为研究,2014
|
CSCD被引
2
次
|
|
|
|
6.
曾星华. 先进铝基复合材料研究的新进展.
中国材料进展,2015,34(6):417-426
|
CSCD被引
9
次
|
|
|
|
7.
张荻. 金属基复合材料的研究现状与发展趋势.
中国材料进展,2010,29(4):1-7
|
CSCD被引
62
次
|
|
|
|
8.
黄陆军. 非连续增强钛基复合材料研究进展.
航空材料学报,2014,34(4):126-138
|
CSCD被引
26
次
|
|
|
|
9.
Ervina Efzan M N. Review: effect of alloying element on Al-Si alloys.
Advanced Materials Research,2014,845(1/2):355-359
|
CSCD被引
1
次
|
|
|
|
10.
贾志宏. 汽车车身用6000系铝合金板材微观组织与热处理工艺的研究进展.
材料工程,2014(12):104-113
|
CSCD被引
25
次
|
|
|
|
11.
Pozuelo M. Effect of diamondoids on the microstructure and mechanical behavior of nanostructured Mg-matrix nanocomposites.
Materials Science and Engineering:A,2015,633(1):200-208
|
CSCD被引
1
次
|
|
|
|
12.
Goh C S. Characterization of high performance Mg/MgO nanocomposites.
Journal of Composite Materials,2007,41(19):2325-2335
|
CSCD被引
7
次
|
|
|
|
13.
Suryanarayana C. Mechanically alloyed nanocomposites.
Progress in Materials Science,2013,58(4):383-502
|
CSCD被引
49
次
|
|
|
|
14.
Goh C S. Properties and deformation behaviour of Mg-Y_2O_3 nanocomposites.
Acta Materiallia,2007,55(15):5115-5121
|
CSCD被引
28
次
|
|
|
|
15.
Mirza F A. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites.
Materials,2015,8(8):5138-5153
|
CSCD被引
9
次
|
|
|
|
16.
Huskins E L. Strengthening mechanisms in an Al-Mg alloy.
Materials Science and Engineering: A,2010,527(6):1292-1298
|
CSCD被引
32
次
|
|
|
|
17.
Kumar N. Additivity of strengthening mechanisms in ultrafine grained Al-Mg-Sc alloy.
Materials Science and Engineering,2013,580(3):175-183
|
CSCD被引
17
次
|
|
|
|
18.
Cheng L M. The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111and AA7030.
Metallurgical and Materials Transactions A,2003,34(11):2473-2481
|
CSCD被引
11
次
|
|
|
|
19.
Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites.
Acta Materialia,1996,44(1):69-77
|
CSCD被引
20
次
|
|
|
|
20.
Hall E O. The deformation and ageing of mild steel III:discussion of results.
Proceeding of the Physical Society Section B,1951,643(9):747-752
|
CSCD被引
1
次
|
|
|
|
|