Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades
查看参考文献20篇
文摘
|
The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF) source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D) simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE) in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design. |
来源
|
Chinese Journal of Aeronautics
,2017,30(5):1651-1659 【核心库】
|
DOI
|
10.1016/j.cja.2017.07.014
|
关键词
|
Axial compressor
;
Bowing
;
Cascade
;
Circumferential fluctuation
;
Inlet flow
;
Radial equilibrium
|
地址
|
1.
School of Energy and Power Engineering, Beihang University, Beijing, 100083
2.
AECC Shenyang Engine Research Institute, Shenyang, 110015
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1000-9361 |
学科
|
航空 |
基金
|
国家自然科学基金
;
国家973计划
;
北京市自然科学基金
|
文献收藏号
|
CSCD:6089584
|
参考文献 共
20
共1页
|
1.
Deich M E. A new method of profiling the guide vane cascades of turbine stages with small diameter-span ratio.
Teploenegetika,1962,8(8):42-46
|
CSCD被引
1
次
|
|
|
|
2.
Breugelmans F A H. Influence of dihedral on the secondary flow in a two-dimensional compressor cascade.
J Eng Gas Turb Power,1984,106(3):578-584
|
CSCD被引
34
次
|
|
|
|
3.
Shang E. The experimental investigations on the compressor cascades with leaned and curved blade.
Proceeding of the ASME 1993 international gas turbine and aeroengine congress and exposition; 1993 May 24-27; Cincinnati, Ohio, USA,1993
|
CSCD被引
1
次
|
|
|
|
4.
Weingold H D. Bowed stators: An example of CFD applied to improve multistage compressor efficiency.
J Turbomach,1997,119(2):161-168
|
CSCD被引
34
次
|
|
|
|
5.
Fischer A. Performance of strongly bowed stators in a four-stage high-speed compressor.
J Turbomach,2004,126(3):333-338
|
CSCD被引
9
次
|
|
|
|
6.
Tan C. Influences of blade bowing on flowfields of turbine stator cascades.
AIAA J,2003,41(10):1967-1972
|
CSCD被引
9
次
|
|
|
|
7.
Tan C. Flowfield and aerodynamic performance of a turbine stator cascade with bowed blades.
AIAA J,2004,42(10):2170-2171
|
CSCD被引
9
次
|
|
|
|
8.
Tan C. Blade bowing effect on aerodynamic performance of a highly loaded turbine cascade.
J Propul Power,2010,26(3):604-608
|
CSCD被引
6
次
|
|
|
|
9.
Schobeiri M T. A comparative aerodynamic and performance study of a threestage high pressure turbine with 3-d bowed blades and cylindrical blades.
Proceedings of ASME turbo expo 2004: Power for land, sea, and air; 2004 Jun 14-17; Vienna, Austria,2004
|
CSCD被引
1
次
|
|
|
|
10.
Vand M H. Numerical study of the effects of bowed blades on aerodynamic characteristics in a high pressure turbine.
Proceedings of ASME turbo expo 2005: Power for land, sea, and air; 2005 Jun 6-9; Nevada, USA,2005
|
CSCD被引
1
次
|
|
|
|
11.
Chen L. Flow performance of highly loaded axial fan with bowed rotor blades.
Mater Sci Eng Conf Ser,2013,52(4):66-71
|
CSCD被引
2
次
|
|
|
|
12.
McNulty G S. The impact of forward swept rotors on tip clearance flows in subsonic axial compressors.
J Turbomach,2004,126(4):445-454
|
CSCD被引
16
次
|
|
|
|
13.
Gallimore S J. The use of sweep and dihedral in multistage axial flow compressor blading-Part I: University research and methods development.
J Turbomach,2002,124(4):521-532
|
CSCD被引
60
次
|
|
|
|
14.
Ramakrishna P V. Numerical study of the stagger angle effects in forward swept axial compressor rotor passages.
Proceedings of ASME turbo rxpo 2010; 2010 Jun 14-18; Glasgow, UK,2010:1-11
|
CSCD被引
1
次
|
|
|
|
15.
D'Ippolito G. The influence of blade lean on straight and annular turbine cascade flow field.
J Turbomach,2011,133(1):011013
|
CSCD被引
4
次
|
|
|
|
16.
Gui X. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors.
J Therm Sci,2013,22(5):383-394
|
CSCD被引
10
次
|
|
|
|
17.
Chang H. Effect of blade sweep on inlet flow in axial compressor cascades.
Chinese J Aeronaut,2015,28(1):103-111
|
CSCD被引
9
次
|
|
|
|
18.
Steinert W. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application.
J Turbomach,1991,113(4):583-590
|
CSCD被引
24
次
|
|
|
|
19.
Edwards J R. A low-diffusion flux-splitting scheme for Navierstokes calculations.
Comput Fluids,1997,26(6):635-659
|
CSCD被引
27
次
|
|
|
|
20.
Jin H L.
Application of circumferentional average method in multistage axial fan/compressor design and analysis [dissertation]. [Chinese],2011
|
CSCD被引
1
次
|
|
|
|
|