帮助 关于我们

返回检索结果

组稀疏模型及其算法综述
Survey on Group Sparse Models and Algorithms

查看参考文献75篇

文摘 稀疏性与组稀疏性在统计学、信号处理和机器学习等领域中具有重要的应用.本文总结和分析了不同组稀疏模型之间的区别与联系,比较了不同组稀疏模型的变量选择能力、变量组选择能力、变量选择一致性和变量组选择一致性,总结了组稀疏模型的各类求解算法并指出了各算法的优点和不足.最后,本文对组稀疏模型未来的研究方向进行了探讨.
其他语种文摘 The sparsity and group sparsity have important applications in the statistics,signal processing and machine learning.This paper summarized and analyzed the differences and relations between various group sparse models.In addition,we compared different models' variable selection ability,variable group selection ability,variable selection consistency and variable group selection consistency.We also summarized the algorithms of group sparse models and pointed the advantages and disadvantages of the algorithms.Finally,we point out the future research directions of the group sparse models.
来源 电子学报 ,2015,43(4):776-782 【核心库】
DOI 10.3969/j.issn.0372-2112.2015.04.021
关键词 稀疏性 ; 组稀疏性 ; 变量选择 ; 变量组选择 ; 一致性
地址

中国石油大学(北京)自动化研究所, 北京, 102249

语种 中文
文献类型 综述型
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:5442859

参考文献 共 75 共4页

1.  Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:Series B,1996,58(1):267-288 CSCD被引 953    
2.  Yuan M. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society:Series B,2006,68(1):49-67 CSCD被引 118    
3.  Turlach B A. Simultaneous variable selection. Technometrics,2005,47(3):349-363 CSCD被引 9    
4.  Tropp J A. Algorithms for simultaneous sparse approximation. Signal Processing,2006,86(3):589-602 CSCD被引 77    
5.  Quattoni A. Transfer learning for image classification with sparse prototype representations. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8 CSCD被引 2    
6.  Schmidt M W. Structure learning in random fields for heart motion abnormality detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008:1-8 CSCD被引 1    
7.  Quattoni A. An efficient projection for L_(1,∞) regularization. Proceedings of the 26th Annual International Conference on Machine Learning,2009:857-864 CSCD被引 4    
8.  Vogt J E. The group-Lasso:l_(1,∞) regularization versus l_(1,2) regularization. Proceedings of the 32nd DAGM conference on Pattern recognition,2010:252-261 CSCD被引 2    
9.  Huang J. The benefit of group sparsity. The Annals of Statistics,2010,38(4):1978-2004 CSCD被引 9    
10.  Sra S. Fast projections onto ?_(1,q)-norm balls for grouped feature selection. Lecture Notes in Computer Science,2011:305-317 CSCD被引 1    
11.  Kowalski M. Sparse regression using mixed norms. Applied and Computational Harmonic Analysis,2009,27(3):303-324 CSCD被引 4    
12.  Rakotomamonjy A. Lp-Lq penalty for sparselinear and sparse multiple kernel multi-task learning. IEEE Transactions on Neural Networks,2011,22(8):1307-1320 CSCD被引 11    
13.  Simon N. Standardization and the group lasso penalty. Statistica Sinica,2012,22(3):983-1001 CSCD被引 1    
14.  Bunea F. The group square-root lasso:theoretical properties and fast algorithms. IEEE Transactions on Information Theory,2014,60(2):1313-1325 CSCD被引 1    
15.  Belloni A. Square-root lasso:pivotal recovery ofsparse signals via conic programming. Biometrika,2011,98(4):791-806 CSCD被引 4    
16.  Wang H. A note on adaptive group lasso. Computational Statistics and Data Analysis,2008,52(12):5277-5286 CSCD被引 8    
17.  Wei F. Consistent group selection in high-dimensional linear regression. Bernoulli,2010,16(4):1369-1384 CSCD被引 6    
18.  Zou H. The adaptive lasso and its oracle properties. Journal of theAmerican statistical association,2006,101(476):1418-1429 CSCD被引 209    
19.  Zhang H H. Adaptive lasso for Cox's proportional hazards model. Biometrika,2007,94(3):691-703 CSCD被引 21    
20.  Huang J. Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica,2008,18(4):1603-1618 CSCD被引 13    
引证文献 4

1 李少东 基于压缩感知理论的雷达成像技术与应用研究进展 电子与信息学报,2016,38(2):495-508
CSCD被引 13

2 田进 基于重叠稀疏组深度信念网络的图像识别 计算机工程与科学,2018,40(3):515-524
CSCD被引 0 次

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号