桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示
In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization
查看参考文献104篇
文摘
|
微区原位分析是地球科学研究的重要手段,但这些分析技术在华南热液铀矿床中的应用相对较少,限制了对铀矿床成矿机理的深入认识。沙子江铀矿床是华南著名的花岗岩型热液铀矿床。本文利用电子探针( EMPA) 、激光电感耦合等离子体质谱( LA-ICPMS)以及二次离子探针( SIMS)等微区原位分析技术,对沙子江铀矿床中的沥青铀矿开展了U-Pb同位素年代学及元素组成研究,确定了沥青铀矿的形成时代及成分特征,并探讨了蚀变作用对沥青铀矿成分及其表面年龄或化学年龄的影响。电子探针分析结果显示,该沥青铀矿以富铀和钙、极低含量的ThO_2和稀土元素为特征,揭示其为低温热液成因,成矿热液富含Ca。LA-ICP-MS分析结果显示,沥青铀矿的稀土元素总量较低,其配分模式呈轻稀土富集型,具有明显的负Eu异常,与赋矿围岩豆乍山花岗岩的稀土元素组成相似,暗示其铀源可能与豆乍山岩体有密切的关系。蚀变和未蚀变沥青铀矿成分的对比研究显示,蚀变作用会导致硅元素大量进入沥青铀矿晶格,造成铀和铅的丢失,从而影响沥青铀矿的表观年龄或化学年龄,但沥青铀矿的稀土元素配分模式不会受到蚀变的影响。未蚀变沥青铀矿的SIMS微区原位分析获得的U-Pb年龄为101.3 ± 4.5Ma,表明沙子江铀矿床存在100Ma左右的铀成矿事件。受岩石圈伸展控制形成的富CO流体与富铀花岗岩相互作用浸取出花岗岩中的铀,并在合适的构造部位沉淀形成了沙子江铀矿床。 |
其他语种文摘
|
In-situ analyses are important techniques in earth science researches. However,these techniques are rarely used in hydrothermal uranium deposits in South China,which restrain the understanding of the metallogenies of hydrothermal uranium deposits. The Shazijiang uranium deposit is a famous granite-type ( hydrothermal) uranium deposit in South China,but the mineral chemistry and chronology characteristics of uranium minerals are still obscure. This paper revealed the mineral chemistry and chronology of the pitchblende ( uraninite) of the Shazijiang uranium deposit,by using EPMA,LA-ICP-MS and SIMS. The effects of alternation on the chemistry and chemical age of the pitchblende are discussed as well. The results of EMPA show that the pitchblende is characterized by high contents of uranium and calcium,but extremely low contents of ThO_2 and rare earth elements,indicating the pitchblende was precipitated from a low-temperature hydrothermal fluid,which was characterized by high Ca ions. A comparative study of unaltered and altered pitchblende shows that alteration can cause a large amount of silicon to enter the pitchblende,replacing the uranium and lead. However,the apparent age or chemical age of the pitchblende is significantly affected by its alteration. The SIMS U-Pb age dating of the pitchblende obtained an age of 101.4 ± 5Ma,indicating that there is an early uranium metallogenic event of about 100Ma in Shazijinag uranium deposit. The results of LA-ICP-MS show that the pitchblende is characterized by low total amount of rare earth elements. But the chondrite-normalized patterns of rare earth elements are rich in light-REE,with obvious negative Eu anomalies. It is indicated that the uranium source rocks may be the Douzhashan wall rock granite. The extension of the lithosphere caused the upwelling of the mantle fluid which interacted with the deep uranium-rich granite,forming a uranium-rich hydrothermal fluid. The Shazijiang uranium deposit formed due to the precipitation of the pitchblende in the structural fracture zone. |
来源
|
岩石学报
,2019,35(9):2679-2694 【核心库】
|
DOI
|
10.18654/1000-0569/2019.09.04
|
关键词
|
沙子江铀矿床
;
沥青铀矿
;
微区分析
;
矿物化学
;
年代学
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院大学地球与行星科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0569 |
学科
|
地质学 |
基金
|
中国科学院先导专项B类
;
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:6581126
|
参考文献 共
104
共6页
|
1.
Alexandre P. Effects of cationic substitutions and alteration in uraninite,and implications for the dating of uranium deposits.
The Canadian Mineralogist,2005,43(3):1005-1017
|
CSCD被引
10
次
|
|
|
|
2.
Bastrakov E N.
Solubility of uranium in hydrothermal fluids at 25 ~ 300℃:Implications for the formation of uranium deposits.29,2010:1-81
|
CSCD被引
1
次
|
|
|
|
3.
Bonnetti C. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields,North Guangdong Province,SE China:Insights from mineralogical,trace elements and U-Pb isotopes signatures of the U mineralisation.
Ore Geology Reviews,2018,92:588-612
|
CSCD被引
39
次
|
|
|
|
4.
Bowles J F W. Age dating from electron microprobe analyses of U, Th and Pb:Geological advantages and analytical difficulties.
Microscopy and Microanalysis,2015,21(5):1114-1122
|
CSCD被引
4
次
|
|
|
|
5.
Burns P C. Wyartite:Crystallographic evidence for the first pentavalent-uranium mineral.
American Mineralogist,1999,84(9):1456-1460
|
CSCD被引
2
次
|
|
|
|
6.
Chen C H. Was there Jurassic paleo-Pacific subduction in South China? Constraints from ~(40)Ar/~(39) Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts.
Lithos,2008,106(1/2):83-92
|
CSCD被引
82
次
|
|
|
|
7.
Chen X C. Cassiterite LA-MC-ICP-MS U/Pb and muscovite ~(40)Ar/~(39) Ar dating of tin deposits in the Tengchong-Lianghe tin district,NW Yunnan,China.
Mineralium Deposita,2014,49(7):843-860
|
CSCD被引
28
次
|
|
|
|
8.
Chen X C. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China:Evidences from zircon U-Pb ages and Hf-O isotopes,and whole-rock Sr-Nd isotopes.
Lithos,2015,212/215:93-110
|
CSCD被引
38
次
|
|
|
|
9.
Chen Y W. Element geochemistry, mineralogy,geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province,China:Implications for U mineralization.
Lithos,2012,150:119-134
|
CSCD被引
23
次
|
|
|
|
10.
Deditius A P. Alteration of UO_2 + x under oxidizing conditions,Marshall Pass,Colorado,USA.
Journal of Alloys and Compounds,2007,444/445:584-589
|
CSCD被引
2
次
|
|
|
|
11.
Depine M. Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source.
Mineralium Deposita,2013,48(4):423-435
|
CSCD被引
5
次
|
|
|
|
12.
Eglinger A. Geochemical signatures of uranium oxides in the Lufilian belt:From unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle.
Ore Geology Reviews,2013,54:197-213
|
CSCD被引
22
次
|
|
|
|
13.
Fayek M. O and Pb isotopic analyses of uranium minerals by ion microprobe and U-Pb ages from the Cigar Lake deposit.
Chemical Geology,2002,185(3/4):205-225
|
CSCD被引
7
次
|
|
|
|
14.
Finch R J. The corrosion of uraninite under oxidizing conditions.
Journal of Nuclear Materials,1992,190:133-156
|
CSCD被引
11
次
|
|
|
|
15.
Forster H J. The chemical composition of uraninite in Variscan granites of the Erzgebirge,Germany.
Mineralogical Magazine,1999,63(2):239-252
|
CSCD被引
10
次
|
|
|
|
16.
Frimmel H E. Uraninite chemistry as forensic tool for provenance analysis.
Applied Geochemistry,2014,48:104-121
|
CSCD被引
16
次
|
|
|
|
17.
Fryer B J. Rare-earth element distributions in uraninites:Implications for ore genesis.
Chemical Geology,1987,63(1/2):101-108
|
CSCD被引
15
次
|
|
|
|
18.
Gilder S A. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China.
Journal of Geophysical Research:Solid Earth,1996,101(B7):16137-16154
|
CSCD被引
316
次
|
|
|
|
19.
Grandstaff D E. A kinetic study of the dissolution of uraninite.
Economic Geology,1976,71(8):1493-1506
|
CSCD被引
5
次
|
|
|
|
20.
Hu H. Timing of hydrothermal activity associated with the Douzhashan uranium-bearing granite and its significance for uranium mineralization in northeastern Guangxi, China.
Chinese Science Bulletin,2013,58(34):4319-4328
|
CSCD被引
5
次
|
|
|
|
|