帮助 关于我们

返回检索结果

CdS/rGO复合气凝胶的自组装合成及光催化降解盐酸四环素性能
Self-assembly synthesis of CdS/rGO composite aerogels and its photocatalytic degradation of tetracycline hydrochloride

查看参考文献32篇

文摘 以L-赖氨酸为还原剂和交联剂,采用一步水热法制备嵌入CdS纳米薄片(CdS NSs)的三维CdS/还原氧化石墨烯(CdS/rGO)复合气凝胶。结果表明:CdS/rGO复合气凝胶大的比表面积BET(Brunauer-Emmett-Teller,BET)和海绵状性质可增强对污染物的吸附,且其质量轻可漂浮在水面上可增强对光的吸收,同时rGO的引入促进了光生电荷的分离,使该复合气凝胶的光催化性能得到明显提升。在可见光照射下,CdS/rGO复合气凝胶可以在45 min内将盐酸四环素(tetracycline hydrochloride,TC)完全降解,1.5 h后几乎所有TC都已经矿化。此外,CdS/rGO复合气凝胶还显示出高稳定性并且容易从反应体系中分离出来,进行回收循环使用。经过5次循环使用后,CdS/rGO复合气凝胶的光催化活性没有明显降低。
其他语种文摘 A CdS/reduced graphene oxide (rGO) composite aerogel with CdS nanosheets (CdS NSs) grown on an interconnected three-dimensional rGO-based porous network was prepared by one-pot hydrothermal method using L-lysine as a reducing agent and the cross-linker. The results show that its enhanced adsorption toward pollutants owing to its large Brunauer-Emmett-Teller specific surface area and spongy nature, and improved light absorption due to its extremely light weight nature. Moreover, the rGO promotes the photogenerated charge separation. Thus, the CdS/rGO composite aerogel exhibits enhanced activity for photocatalytic degradation. It can be observed that the tetracycline hydrochloride (TC) has been degraded totally after 45 min by irradiated CdS/rGO composite aerogel, and almost all TC has been mineralized after 1.5 h. Moreover, the CdS/rGO composite aerogel also shows high stability and can be easily separated from the reaction systems for recycling. The photocatalytic reduction activity of CdS/rGO composite aerogel shows no obvious decrease after 5 cycles.
来源 材料工程 ,2024,52(5):163-170 【核心库】
DOI 10.11868/j.issn.1001-4381.2022.000431
关键词 rGO气凝胶 ; CdS ; 光催化 ; 盐酸四环素 ; 回收
地址

福建生物工程职业技术学院, 福州, 350007

语种 中文
文献类型 研究性论文
ISSN 1001-4381
学科 化学
基金 福建省自然科学基金 ;  福建省中青年教师教育科研项目
文献收藏号 CSCD:7723561

参考文献 共 32 共2页

1.  Lin Y C. Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity. Applied Surface Science,2018,440:1227-1234 CSCD被引 4    
2.  Yuan Y J. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A,2018,6:11606-11630 CSCD被引 27    
3.  Wei Y X. Semiconductor photocatalysts for solar-to-hydrogen energy conversion: recent advances of CdS. Current Analytical Chemistry,2021,17(5):573-589 CSCD被引 1    
4.  Wu J. Advances on photocatalytic CO_2 reduction based on CdS and CdSe nano-semiconductors. Acta Physico-Chimica Sinica,2021,37(5):2008043 CSCD被引 6    
5.  Wang H. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering:R,2018,130:1-39 CSCD被引 13    
6.  赵荣祥. 离子液辅助水热法合成树枝状硫化镉及光催化性能. 材料工程,2014(2):7-12 CSCD被引 5    
7.  Li C X. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. Journal of Materials Chemistry,2012,22:23815-23820 CSCD被引 4    
8.  Gong Q. In situ sacrificial template approach to the synthesis of octahedral CdS microcages. Journal of Physical Chemistry C,2007,111(5):1935-1940 CSCD被引 2    
9.  Wei X N. Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles. Applied Surface Science,2019,469:666-674 CSCD被引 5    
10.  Ye F. Constructing BiVO_4-Au@CdS photocatalyst with energic charge-carrier separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants. Applied Catalysis B:Environmental,2018,227:258-265 CSCD被引 11    
11.  Mcneill A. CdS-coated thin plastic films for visible-light photocatalysis. Journal of Physics:Energy,2020,2(4):044003 CSCD被引 1    
12.  Cui H J. Z-scheme based CdS/CdWO_4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Applied Surface Science,2018,455:831-840 CSCD被引 9    
13.  Liu W J. Assembly of RGO composite aerogels embedded with ultrasmall Au nanoparticles as an active and recyclable catalyst for reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering,2020,8(4):103835 CSCD被引 1    
14.  Arunkumar T. Energy efficient materials for solar water distillation-a review. Renewable and Sustainable Energy Reviews,2019,115:109409 CSCD被引 3    
15.  Anjali J. Carbon-based hydrogels:synthesis and their recent energy applications. Journal of Materials Chemistry A,2019(7):15491-15518 CSCD被引 6    
16.  Mamba G. State of the art on the photocatalytic applications of graphene based nanostructures: from elimination of hazardous pollutants to disinfection and fuel generation. Journal of Environmental Chemical Engineering,2020,8(2):103505 CSCD被引 2    
17.  Qiu B C. Recent advances in threedimensional graphene based materials for catalysis applications. Chemical Society Reviews,2018,47:2165-2216 CSCD被引 25    
18.  Liu W J. Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustainable Chemistry & Engineering,2015,3(2):277-282 CSCD被引 10    
19.  Liu W J. TiO_2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis. Applied Catalysis B: Environmental,2015,174:421-426 CSCD被引 12    
20.  Bu F X. 3D Graphene composites for efficient electrochemical energy storage. Advanced Materials Interfaces,2018,5(15):1800468 CSCD被引 4    
引证文献 1

1 张博 核壳结构Fe_3O_4@SiO_2@介孔TiO_2的合成及其光电催化降解水中有机污染物 材料工程,2024,52(10):160-169
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号