CdS/rGO复合气凝胶的自组装合成及光催化降解盐酸四环素性能
Self-assembly synthesis of CdS/rGO composite aerogels and its photocatalytic degradation of tetracycline hydrochloride
查看参考文献32篇
文摘
|
以L-赖氨酸为还原剂和交联剂,采用一步水热法制备嵌入CdS纳米薄片(CdS NSs)的三维CdS/还原氧化石墨烯(CdS/rGO)复合气凝胶。结果表明:CdS/rGO复合气凝胶大的比表面积BET(Brunauer-Emmett-Teller,BET)和海绵状性质可增强对污染物的吸附,且其质量轻可漂浮在水面上可增强对光的吸收,同时rGO的引入促进了光生电荷的分离,使该复合气凝胶的光催化性能得到明显提升。在可见光照射下,CdS/rGO复合气凝胶可以在45 min内将盐酸四环素(tetracycline hydrochloride,TC)完全降解,1.5 h后几乎所有TC都已经矿化。此外,CdS/rGO复合气凝胶还显示出高稳定性并且容易从反应体系中分离出来,进行回收循环使用。经过5次循环使用后,CdS/rGO复合气凝胶的光催化活性没有明显降低。 |
其他语种文摘
|
A CdS/reduced graphene oxide (rGO) composite aerogel with CdS nanosheets (CdS NSs) grown on an interconnected three-dimensional rGO-based porous network was prepared by one-pot hydrothermal method using L-lysine as a reducing agent and the cross-linker. The results show that its enhanced adsorption toward pollutants owing to its large Brunauer-Emmett-Teller specific surface area and spongy nature, and improved light absorption due to its extremely light weight nature. Moreover, the rGO promotes the photogenerated charge separation. Thus, the CdS/rGO composite aerogel exhibits enhanced activity for photocatalytic degradation. It can be observed that the tetracycline hydrochloride (TC) has been degraded totally after 45 min by irradiated CdS/rGO composite aerogel, and almost all TC has been mineralized after 1.5 h. Moreover, the CdS/rGO composite aerogel also shows high stability and can be easily separated from the reaction systems for recycling. The photocatalytic reduction activity of CdS/rGO composite aerogel shows no obvious decrease after 5 cycles. |
来源
|
材料工程
,2024,52(5):163-170 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000431
|
关键词
|
rGO气凝胶
;
CdS
;
光催化
;
盐酸四环素
;
回收
|
地址
|
福建生物工程职业技术学院, 福州, 350007
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
福建省自然科学基金
;
福建省中青年教师教育科研项目
|
文献收藏号
|
CSCD:7723561
|
参考文献 共
32
共2页
|
1.
Lin Y C. Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity.
Applied Surface Science,2018,440:1227-1234
|
CSCD被引
4
次
|
|
|
|
2.
Yuan Y J. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production.
Journal of Materials Chemistry A,2018,6:11606-11630
|
CSCD被引
27
次
|
|
|
|
3.
Wei Y X. Semiconductor photocatalysts for solar-to-hydrogen energy conversion: recent advances of CdS.
Current Analytical Chemistry,2021,17(5):573-589
|
CSCD被引
1
次
|
|
|
|
4.
Wu J. Advances on photocatalytic CO_2 reduction based on CdS and CdSe nano-semiconductors.
Acta Physico-Chimica Sinica,2021,37(5):2008043
|
CSCD被引
6
次
|
|
|
|
5.
Wang H. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis.
Materials Science and Engineering:R,2018,130:1-39
|
CSCD被引
13
次
|
|
|
|
6.
赵荣祥. 离子液辅助水热法合成树枝状硫化镉及光催化性能.
材料工程,2014(2):7-12
|
CSCD被引
5
次
|
|
|
|
7.
Li C X. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution.
Journal of Materials Chemistry,2012,22:23815-23820
|
CSCD被引
4
次
|
|
|
|
8.
Gong Q. In situ sacrificial template approach to the synthesis of octahedral CdS microcages.
Journal of Physical Chemistry C,2007,111(5):1935-1940
|
CSCD被引
2
次
|
|
|
|
9.
Wei X N. Photoluminescence and photocatalytic properties of europium doped ZnO nanoparticles.
Applied Surface Science,2019,469:666-674
|
CSCD被引
5
次
|
|
|
|
10.
Ye F. Constructing BiVO_4-Au@CdS photocatalyst with energic charge-carrier separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants.
Applied Catalysis B:Environmental,2018,227:258-265
|
CSCD被引
11
次
|
|
|
|
11.
Mcneill A. CdS-coated thin plastic films for visible-light photocatalysis.
Journal of Physics:Energy,2020,2(4):044003
|
CSCD被引
1
次
|
|
|
|
12.
Cui H J. Z-scheme based CdS/CdWO_4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution.
Applied Surface Science,2018,455:831-840
|
CSCD被引
9
次
|
|
|
|
13.
Liu W J. Assembly of RGO composite aerogels embedded with ultrasmall Au nanoparticles as an active and recyclable catalyst for reduction of 4-nitrophenol.
Journal of Environmental Chemical Engineering,2020,8(4):103835
|
CSCD被引
1
次
|
|
|
|
14.
Arunkumar T. Energy efficient materials for solar water distillation-a review.
Renewable and Sustainable Energy Reviews,2019,115:109409
|
CSCD被引
3
次
|
|
|
|
15.
Anjali J. Carbon-based hydrogels:synthesis and their recent energy applications.
Journal of Materials Chemistry A,2019(7):15491-15518
|
CSCD被引
6
次
|
|
|
|
16.
Mamba G. State of the art on the photocatalytic applications of graphene based nanostructures: from elimination of hazardous pollutants to disinfection and fuel generation.
Journal of Environmental Chemical Engineering,2020,8(2):103505
|
CSCD被引
2
次
|
|
|
|
17.
Qiu B C. Recent advances in threedimensional graphene based materials for catalysis applications.
Chemical Society Reviews,2018,47:2165-2216
|
CSCD被引
25
次
|
|
|
|
18.
Liu W J. Self-assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis.
ACS Sustainable Chemistry & Engineering,2015,3(2):277-282
|
CSCD被引
10
次
|
|
|
|
19.
Liu W J. TiO_2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis.
Applied Catalysis B: Environmental,2015,174:421-426
|
CSCD被引
12
次
|
|
|
|
20.
Bu F X. 3D Graphene composites for efficient electrochemical energy storage.
Advanced Materials Interfaces,2018,5(15):1800468
|
CSCD被引
4
次
|
|
|
|
|