SLM参数对GH3536高温合金显微缺陷和表面质量的影响
Effect of SLM process parameters on microscopic defects and surface quality of GH3536 superalloy
查看参考文献28篇
文摘
|
采用选区激光熔化技术(SLM)制备GH3536高温合金试样,通过改变激光功率和扫描速度研究工艺参数对成形试样密度、显微缺陷和表面质量的影响。结果表明:当激光能量密度从46.3 J/mm~3增加到243.1 J/mm~3时,成形试样密度得到显著提高并在8.30~8.35 g/cm~3范围内波动,随着输入的激光能量进一步增加试样密度又略微下降。通过金相观察发现当输入激光能量不足时,试样内部存在大量不规则孔洞缺陷,然而当输入激光能量过高时,试样内部出现了许多分布均匀的微裂纹和气孔,说明激光能量过高或过低都会降低成形试样的致密度。进一步对成形试样表面黏附的飞溅颗粒统计分析后,确定了SLM成形GH3536合金的最佳工艺参数,对该参数下成形的试样进行室温拉伸性能测试,得到了具有良好室温拉伸力学性能的GH3536高温合金材料。 |
其他语种文摘
|
GH3536 superalloy was fabricated using Selective Laser Melting (SLM) to investigate the effect of process parameters including the laser power and scanning speed on the density, microscopic defects and surface quality of GH3536 samples. According to the measurement of density, it can be found that the density of samples increases rapidly when the laser energy density is less than 57.0 J/mm~3, the density of samples fluctuates within the range of 8.30 g/cm~3-8.35 g/cm~3 as the laser energy density increases from 57.0 J/mm~3 to 187.0 J/mm~3, while the density of samples decreases slightly when the laser energy further increases. The conclusion is that the inadequate or excessive energy input reduces the density of samples. The metallographic observation shows that there are a large number of lack-of-fusion defects when the laser energy is insufficient. However, when the input laser energy is too much, many evenly distributed microcracks and gas pores appear inside of samples, indicating that defects are the main reason for low density of samples. The optimal process parameters of SLM-processed GH3536 alloy are determined by the statistical analysis of spatter particles which might cause irregular defects. Tensile properties of the sample fabricated under 175 W and 700 mm/s are tested at room temperature and the results show that the SLM-ed GH3536 superalloy has good tensile properties at room temperature. |
来源
|
航空材料学报
,2022,42(5):71-80 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2020.000176
|
关键词
|
选区激光熔化
;
GH3536
;
工艺参数
;
显微缺陷
;
表面质量
|
地址
|
1.
上海交通大学材料科学与工程学院, 上海市先进高温材料及其精密成型重点实验室, 上海, 200240
2.
上海交通大学, 金属基复合材料国家重点实验室, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7324946
|
参考文献 共
28
共2页
|
1.
李雅丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响.
材料工程,2019,47(5):100-106
|
CSCD被引
2
次
|
|
|
|
2.
Yoon D. Hold time-low cycle fatigue behavior of nickel based Hastelloy X at elevated temperatures.
International Journal of Precision Engineering and Manufacturing,2019,20:147-157
|
CSCD被引
3
次
|
|
|
|
3.
黄卫东. 激光立体成形高性能金属零件研究进展.
中国材料进展,2010,29(6):12-27
|
CSCD被引
67
次
|
|
|
|
4.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
119
次
|
|
|
|
5.
王迪. 激光选区熔化成形高温镍基合金研究进展.
航空制造技术,2018,61(10):49-60
|
CSCD被引
20
次
|
|
|
|
6.
Esmaeilizadeh R. Customizing mechanical properties of additively manufactured Hastelloy X parts by adjusting laser scanning speed.
Journal of Alloys & Compounds,2019,812:1-8
|
CSCD被引
1
次
|
|
|
|
7.
Promoppatum P. Analytical evaluation of defect generation for selective laser melting of metals.
International Journal of Advanced Manufacturing Technology,2019,103:1185-1119
|
CSCD被引
3
次
|
|
|
|
8.
徐锦岗. 工艺参数对H13钢激光选区熔化成形缺陷的影响.
激光与光电子学进展,2018,55:1-7
|
CSCD被引
1
次
|
|
|
|
9.
Kempen K. Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization.
Materials Science & Technology,2015,3(8):917-923
|
CSCD被引
40
次
|
|
|
|
10.
贾炅昱. SLM增材制造Inconel 718合金的孔隙缺陷和拉伸性能.
热加工工艺,2020,49(18):1-8
|
CSCD被引
5
次
|
|
|
|
11.
Carter L N. Process optimization of selective laser melting using energy density model for nickel based superalloys.
Materials Science & Technology,2016,32(7):1-5
|
CSCD被引
10
次
|
|
|
|
12.
刘畅. 工艺参数对SLM成形316L不锈钢致密度的影响及缺陷表现方式.
热加工工艺,2020
|
CSCD被引
1
次
|
|
|
|
13.
Ni M. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing.
Materials Science and Engineering,2017,701:344-351
|
CSCD被引
37
次
|
|
|
|
14.
Aboulkhair N T. Reducing porosity in AlSi10Mg parts processed by selective laser melting.
Additive Manufacturing,2014,1/4:77-86
|
CSCD被引
82
次
|
|
|
|
15.
Kruth J P. Consolidation phenomena in laser and powder-bed based layered manufacturing.
CIRP Annals-Manufacturing Technology,2007,56(2):730-759
|
CSCD被引
70
次
|
|
|
|
16.
Zhang B. Defect Formation Mechanisms in Selective Laser Melting: A Review.
Chinese Journal of Mechanical Engineering,2017,30(3):515-527
|
CSCD被引
60
次
|
|
|
|
17.
张亮. 激光选区熔化热输入参数对Inconel 718合金温度场的影响.
材料工程,2018,46(7):29-35
|
CSCD被引
5
次
|
|
|
|
18.
杜畅. 激光增材制造残余应力研究现状.
表面技术,2019,48(1):213-220
|
CSCD被引
2
次
|
|
|
|
19.
Wang D. Influence of spatter particles contamination on densification behavior and tensile properties of CoCrW manufactured by selective laser melting.
Optics & Laser Technology,2020,121:1-11
|
CSCD被引
8
次
|
|
|
|
20.
Wang Z. Investigation into spatter particles and their effect on the formation quality during selective laser melting processes.
Computer Modeling in Engineering & Sciences,2020,124(1):243-263
|
CSCD被引
3
次
|
|
|
|
|