基于PVP改性的水合物抑制剂的合成与应用
Synthesis and application of modified natural gas hydrate kinetic inhibitors based on PVP
查看参考文献23篇
文摘
|
在聚乙烯基吡络烷酮(PVP)的基础上合成了两种低剂量水合物动力学抑制剂羧基改性的聚乙烯基吡络烷酮(PVPCOOH)和氨基改性的聚乙烯基吡络烷酮(PVPNH_2)。采用FTIR,~(13)C NMR, XPS, GPC等方法对合成的PVPCOOH和PVPNH_2进行表征。在蓝宝石高压定容反应釜中研究了PVPCOOH和PVPNH_2对甲烷水合物生成过程的影响,并与动力学抑制剂PVP进行了比较;同时考察了PVPCOOH和PVPNH_2含量和过冷度对其抑制效果的影响,并对PVPCOOH和PVPNH_2的抑制机理进行了分析。表征结果显示,合成的两种物质PVPNH2和PVPCOOH分别为氨基改性的PVP和羧基改性的PVP;根据~(13)CNMR谱图计算出PVPCOOH和PVPNH_2的纯度均大于99%; PVPNH_2, PVPCOOH, PVP三者的相对分子质量分布均较集中。实验结果表明,PVPCOOH和PVPNH_2比PVP的水溶性好;PVPCOOH跟PVP的抑制效果相当,但PVPNH2比PVP的抑制效果差;PVPCOOH和PVPNH_2的浓度对最大过冷度的测定无明显影响。 |
其他语种文摘
|
Based on polyvinylpyrrolidone(PVP),two low-dosage kinetic inhibitors for the formation of natural gas hydrates, namely carboxy-modified polyvinylpyrrolidone(PVPCOOH) and amino-modified polyvinylpyrrolidone(PVPNH2), were synthesized and characterized by FTIR, ~(13)C NMR, XPS and GPC. The influences of their concentrations and subcooling on the hydrate formation were investigated in a high-pressure sapphire reactor, and compared with the kinetic inhibitor PVP. The results showed that the purities of both PVPCOOH and PVPNH_2 reached more than 99% and the relative molecular mass distributions of PVP,PVPCOOH and PVPNH_2 were concentrated. The experimental results indicated that the solubility of both PVPCOOH and PVPNH_2 in water was higher than that of PVP. The inhibition effect of PVPCOOH to the formation of natural gas hydrates was similar to that of PVP, but the inhibition effect of PVPNH_2 was worse. The influence of the concentrations of PVPCOOH and PVPNH_2 on the determination of the subcooling was little. The inhibition mechanisms of PVPCOOH and PVPNH_2 were analyzed based on the experimental results. |
来源
|
石油化工
,2016,45(12):1506-1512 【核心库】
|
DOI
|
10.3969/j.issn.1000-8144.2016.12.015
|
关键词
|
天然气水合物
;
动力学抑制剂
;
抑制机理
;
聚乙烯基吡络烷酮
|
地址
|
中国科学院广州能源研究所, 中国科学院天然气水合物重点实验室;;广东省新能源和可再生能源研究开发与应用重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8144 |
学科
|
化学工业 |
基金
|
中国石油-中国科学院科技合作项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:5880701
|
参考文献 共
23
共2页
|
1.
Takeya S. Lattice Expansion of clathrate hydrates of methane mixtures and natural gas.
Angew Chem Int Ed,2005,44(42):6928-6931
|
CSCD被引
2
次
|
|
|
|
2.
Hester K C. Thermal expansivity for S I and S II clathrate hydrates.
J Phys Chem,2006,111(30):8830-8835
|
CSCD被引
1
次
|
|
|
|
3.
Sloan E D. Fundamental principles and applications of natural gas hydrates.
Nature,2003,426(6964):353-363
|
CSCD被引
240
次
|
|
|
|
4.
Strobel T A. Thermodynamic predictions of various tetrahydrofuran and hydrogen clathrate hydrates.
Fluid Phase Equilib,2009,280(1/2):61-67
|
CSCD被引
9
次
|
|
|
|
5.
Zhang J S. Kinetics of methane hydrate formation from SDS solution.
Ind Eng Chem Res,2007,46(19):6353-6359
|
CSCD被引
20
次
|
|
|
|
6.
Tavasoli H. Prediction of gas hydrate formation condition in the presence of thermodynamic inhibitors with the elliott-suresh-donohue equation of state.
J Pet Sci Eng,2011,77(1):93-103
|
CSCD被引
3
次
|
|
|
|
7.
许维秀. 天然气水合物抑制剂研究进展.
化工进展,2006,25(11):1289-1300
|
CSCD被引
21
次
|
|
|
|
8.
Kelland A. History of the development of low dosage hydrate inhibitors malcolm.
Energy Fuels,2006,20(3):826-847
|
CSCD被引
1
次
|
|
|
|
9.
Bjorn K. Molecular dynamics simulations for selection of kinetic hydrate inhibitors.
J Mol Graphics Modell,2005,23(6):524-536
|
CSCD被引
13
次
|
|
|
|
10.
Sun Minwei. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture.
Chem Eng J,2013,402(7):312-319
|
CSCD被引
9
次
|
|
|
|
11.
Malcolm A K. Kinetic hydrate inhibition with N-alkyl-N-vinylformamide polymers: Comparison of polymers to n-propyl and isopropyl groups.
Energy Fuels,2015,29(8):4941-4946
|
CSCD被引
3
次
|
|
|
|
12.
Qin Huibo. Synthesis and evaluation of two new kinetic hydrate inhibitors.
Energy Fuels,2015,29(11):7135-7141
|
CSCD被引
9
次
|
|
|
|
13.
Ranucci E. NMR spectroscopy and MALDI-TOF MS characterisation of end-functionalised PVP oligomers prepared with different esters as chain transfer agents.
Macromol Biosci,2006,6(3):216-227
|
CSCD被引
1
次
|
|
|
|
14.
徐秀峰. 用XPS表征氧、氮、硫元素的存在形态.
煤炭转化,1996,19(1):73-77
|
CSCD被引
6
次
|
|
|
|
15.
Guo Hongxu. Simple fabrication of flake-like NH_2-MIL-53 (Cr) and its application as an electrochemical sensor for the detection of Pb~(2+).
Chem Eng J,2016,289(4):479-485
|
CSCD被引
1
次
|
|
|
|
16.
Nakamura T. Stability boundaries of gas hydrates helped by methane-structure-H hydrates of methylcyclohexane and cis-l,2-dimethylcyclohexane.
Chem Eng Sci,2003,58(2):269-273
|
CSCD被引
12
次
|
|
|
|
17.
Duchateau C. Laboratory evaluation of kinetic hydrate inhibitors: A procedure for enhancing the repeatability of test results.
Energy Fuels,2009,23(1):962-966
|
CSCD被引
3
次
|
|
|
|
18.
Hoiland S. Wettability of freon hydrates in crude oil/brine emulsions.
J Colloid Interface Sci,2005,278(1):217-225
|
CSCD被引
4
次
|
|
|
|
19.
Aspenes G. Adhesion force between cyclopentane hydrates and solid surface materials.
J Colloid Interface Sci,2010,343(2):529-536
|
CSCD被引
24
次
|
|
|
|
20.
Aspenes G. The influence of petroleum acids and solid surface energy on pipeline wettability in relation to hydrate deposition.
J Colloid Interface Sci,2009,333(2):533-539
|
CSCD被引
2
次
|
|
|
|
|