具有脉冲效应和综合害虫控制的捕食系统
PREDATOR-PREY SYSTEM WITH IMPULSIVE EFFECT AND INTEGRATED PEST CONTROL
查看参考文献14篇
文摘
|
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统.系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件. |
其他语种文摘
|
In this paper, predator-prey systems with periodic impulsive effect concerning pest control are proposed through biological control and chemical control. The model has the potential to protect natural enemies from extinction, but under some conditions may also serve to demonstrate the extinction of the pest, that is, there exists a global stable pest-eradication periodic solution when the impulsive period is less than some critical values. When the impulsive period increase, the trivial periodic pest-eradication solution loses its stability and a positive periodic solution comes out. The existence of a positive periodic solution is also studied by the bifurcation theory. Conditions for permanence is established via the method of comparison involving multiple Liapunov functions. |
来源
|
系统科学与数学
,2005,25(3):264-275 【核心库】
|
关键词
|
生物控制
;
捕食者-食饵系统
;
脉冲效应
;
分支
|
地址
|
1.
鞍山师范学院生物数学研究所, 辽宁, 鞍山, 114005
2.
中国科学院数学与系统科学研究院数学研究所, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0577 |
学科
|
数学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:1991704
|
参考文献 共
14
共1页
|
1.
Pandit S G. On the stability of impulsively perturbed differential systems.
Bull. Austral Math. Soc.,1977,17:423-432
|
CSCD被引
1
次
|
|
|
|
2.
Simeonov P S. The second method of Liapunov for systems with impulsive effect.
Tamkang J. Math.,1985,16:19-40
|
CSCD被引
1
次
|
|
|
|
3.
Kulev G K. On the asymptotic stability of systems with impulses by direct method of Lyapunov.
J. Math. Anal. Appl.,1989,140:324-340
|
CSCD被引
2
次
|
|
|
|
4.
Roberts M G. The dynamics of an infectious disease in a population with birth pulses.
Math. Biosci.,1998,149:23-36
|
CSCD被引
19
次
|
|
|
|
5.
Shulgin B. Pulse vaccination strategy in the SIR epidemic model.
Bull. Math.Biol.,1998,60:1-26
|
CSCD被引
10
次
|
|
|
|
6.
Hirstova S G. Existence of periodic solution of nonlinear systems of differential equations with impulsive effect.
J. Math. Anal. Appl.,1985,125:192-202
|
CSCD被引
2
次
|
|
|
|
7.
Ballinger G. Permanence of population growth models with impulsive effects.
Math. Comprt. Modelling,1997,26:59-72
|
CSCD被引
15
次
|
|
|
|
8.
Lakshmikantham V. Theory of Impulsive Differential Equation.
World Science,1989
|
CSCD被引
1
次
|
|
|
|
9.
Barclay H J. Model for pest control using predator release.
J. Applied Ecology,1982,19:337-348
|
CSCD被引
16
次
|
|
|
|
10.
Parker F D. Management of pest population by manipulating densities of both host and parasites through periodic releases.
Biological control,1971
|
CSCD被引
3
次
|
|
|
|
11.
Van Lenteren J C. Biological and integrated pest control in greenhouses.
Ann. Rev. Ent.,1988,33:239-250
|
CSCD被引
16
次
|
|
|
|
12.
Lakmeche A. Bifurcation of nontrivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment.
Discrete and Impulsive Systems.,2000,7:265-287
|
CSCD被引
1
次
|
|
|
|
13.
Grebogl C. Fractal basin boundaries.
Phys. Rew. Lett.,1983,50:953-943
|
CSCD被引
1
次
|
|
|
|
14.
Funasaki E. Invasion and chaos in aperiodically pulsed mass-action chemostat.
Theoretical population Biology,1993,44:203-224
|
CSCD被引
8
次
|
|
|
|
|