Efficient Algorithms for Generating Truncated Multivariate Normal Distributions
查看参考文献38篇
文摘
|
Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA algorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and eliminates problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm. |
来源
|
Acta Mathematicae Applicatae Sinica-English Series
,2011,27(4):601-612 【核心库】
|
DOI
|
10.1007/s10255-011-0110-x
|
关键词
|
data augmentation
;
EM algorithm
;
Gibbs sampler
;
IBF sampler
;
linear inequality constraints
;
truncated multivariate normal distribution
|
地址
|
1.
School of Mathematics and Computation Science, Hunan University of Science and Technology, Xiangtan, 411201
2.
Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0168-9673 |
学科
|
数学 |
基金
|
国家社会科学基金
;
湖南省教育厅项目
;
HKU Seed Funding Program for Basic Research
;
Hong Kong Research Grant Council-General Research Fund
|
文献收藏号
|
CSCD:4323981
|
参考文献 共
38
共2页
|
1.
Breslaw, J.A. Random sampling from a truncated multivariate normal distribution.
Applied Mathematics Letters,1994,7:1-6
|
CSCD被引
1
次
|
|
|
|
2.
Chen, M H. Bayesian analysis for a constrained linear multiple regression problem for predicting the new crop of apples.
Journal of Agricultural, Biological and Environmental Statistics,1996,1:467-489
|
CSCD被引
1
次
|
|
|
|
3.
Chen, M H. Bayesian analysis for correlated ordinal data models.
Generalized Linear Models: A Bayesian Perspective,2000:133-157
|
CSCD被引
1
次
|
|
|
|
4.
Chen, M.-H.
Monte Carlo Methods in Bayesian Computation,2000
|
CSCD被引
6
次
|
|
|
|
5.
Chib, S. Bayesian methods for correlated binary data.
Generalized Linear Models: A Bayesian Perspective,2000:113-131
|
CSCD被引
1
次
|
|
|
|
6.
Chib, S. Analysis of multivariate probit models.
Biometrika,1998,85:347-361
|
CSCD被引
4
次
|
|
|
|
7.
Cohen, A. Unbiased tests for normal order restricted hypotheses.
Journal of Multivariate Analysis,1993,46:139-153
|
CSCD被引
1
次
|
|
|
|
8.
Devroye, L.
Non-Uniform Random Variate Generation,1985
|
CSCD被引
1
次
|
|
|
|
9.
Fang, K.T.
Number-theoretic Methods in Statistics,1994
|
CSCD被引
60
次
|
|
|
|
10.
Fraser, D.A.S. A mixed primal-dual Bases algorithm for regression under inequality constraints: Application to concave regression.
Scandinavian Journal of Statistics,1989,16:65-74
|
CSCD被引
1
次
|
|
|
|
11.
Gelfand, A.E. Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling.
Journal of the American Statistical Association,1992,87:523-532
|
CSCD被引
3
次
|
|
|
|
12.
Gelman, A. Inference from iterative simulation using multiple sequences.
Statistical Science,1992,7:457-511
|
CSCD被引
116
次
|
|
|
|
13.
Gelman, A.
Bayesian Data Analysis,1995
|
CSCD被引
36
次
|
|
|
|
14.
Geweke J. Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints.
Computing Science and Statistics: Proceedings of the 23-rd Symposium on the Interface,1991:571-578
|
CSCD被引
1
次
|
|
|
|
15.
Geweke, J. Alternative computational approaches to inference in the multinomial probit model.
Review of Economics and Statistics,1994,76:609-632
|
CSCD被引
2
次
|
|
|
|
16.
Geweke, J. Statistical inference in the multinomial multiperiod probit model.
Journal of Econometrics,1997,80:125-166
|
CSCD被引
1
次
|
|
|
|
17.
Girard, P. Bayesian analysis of autocorrelated ordered categorical data for industrial quality monitoring.
Technometrics,2001,43:180-191
|
CSCD被引
1
次
|
|
|
|
18.
Hajivassiliou, V.A. Simulation for multivariate normal rectangle probabilities and their derivatives: The effects of vectorization.
International Journal of Supercomputer Applications,1993,7:231-253
|
CSCD被引
1
次
|
|
|
|
19.
Hajivassiliou, V.A. Classical estimation methods using Simulation.
Handbook of Econometrics,Vol.4,1994:2383-2441
|
CSCD被引
1
次
|
|
|
|
20.
Hajivassiliou, V.A. Simulation of multivariate normal rectangle probabilities and their derivatives: Theoretical and computational results.
Journal of Econometrics,1996,72:85-134
|
CSCD被引
1
次
|
|
|
|
|