帮助 关于我们

返回检索结果

Efficient Algorithms for Generating Truncated Multivariate Normal Distributions

查看参考文献38篇

Yu Junwu 1 *   Tian Guoliang 2  
文摘 Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA algorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and eliminates problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm.
来源 Acta Mathematicae Applicatae Sinica-English Series ,2011,27(4):601-612 【核心库】
DOI 10.1007/s10255-011-0110-x
关键词 data augmentation ; EM algorithm ; Gibbs sampler ; IBF sampler ; linear inequality constraints ; truncated multivariate normal distribution
地址

1. School of Mathematics and Computation Science, Hunan University of Science and Technology, Xiangtan, 411201  

2. Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong

语种 英文
文献类型 研究性论文
ISSN 0168-9673
学科 数学
基金 国家社会科学基金 ;  湖南省教育厅项目 ;  HKU Seed Funding Program for Basic Research ;  Hong Kong Research Grant Council-General Research Fund
文献收藏号 CSCD:4323981

参考文献 共 38 共2页

1.  Breslaw, J.A. Random sampling from a truncated multivariate normal distribution. Applied Mathematics Letters,1994,7:1-6 CSCD被引 1    
2.  Chen, M H. Bayesian analysis for a constrained linear multiple regression problem for predicting the new crop of apples. Journal of Agricultural, Biological and Environmental Statistics,1996,1:467-489 CSCD被引 1    
3.  Chen, M H. Bayesian analysis for correlated ordinal data models. Generalized Linear Models: A Bayesian Perspective,2000:133-157 CSCD被引 1    
4.  Chen, M.-H. Monte Carlo Methods in Bayesian Computation,2000 CSCD被引 6    
5.  Chib, S. Bayesian methods for correlated binary data. Generalized Linear Models: A Bayesian Perspective,2000:113-131 CSCD被引 1    
6.  Chib, S. Analysis of multivariate probit models. Biometrika,1998,85:347-361 CSCD被引 4    
7.  Cohen, A. Unbiased tests for normal order restricted hypotheses. Journal of Multivariate Analysis,1993,46:139-153 CSCD被引 1    
8.  Devroye, L. Non-Uniform Random Variate Generation,1985 CSCD被引 1    
9.  Fang, K.T. Number-theoretic Methods in Statistics,1994 CSCD被引 60    
10.  Fraser, D.A.S. A mixed primal-dual Bases algorithm for regression under inequality constraints: Application to concave regression. Scandinavian Journal of Statistics,1989,16:65-74 CSCD被引 1    
11.  Gelfand, A.E. Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. Journal of the American Statistical Association,1992,87:523-532 CSCD被引 3    
12.  Gelman, A. Inference from iterative simulation using multiple sequences. Statistical Science,1992,7:457-511 CSCD被引 116    
13.  Gelman, A. Bayesian Data Analysis,1995 CSCD被引 36    
14.  Geweke J. Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints. Computing Science and Statistics: Proceedings of the 23-rd Symposium on the Interface,1991:571-578 CSCD被引 1    
15.  Geweke, J. Alternative computational approaches to inference in the multinomial probit model. Review of Economics and Statistics,1994,76:609-632 CSCD被引 2    
16.  Geweke, J. Statistical inference in the multinomial multiperiod probit model. Journal of Econometrics,1997,80:125-166 CSCD被引 1    
17.  Girard, P. Bayesian analysis of autocorrelated ordered categorical data for industrial quality monitoring. Technometrics,2001,43:180-191 CSCD被引 1    
18.  Hajivassiliou, V.A. Simulation for multivariate normal rectangle probabilities and their derivatives: The effects of vectorization. International Journal of Supercomputer Applications,1993,7:231-253 CSCD被引 1    
19.  Hajivassiliou, V.A. Classical estimation methods using Simulation. Handbook of Econometrics,Vol.4,1994:2383-2441 CSCD被引 1    
20.  Hajivassiliou, V.A. Simulation of multivariate normal rectangle probabilities and their derivatives: Theoretical and computational results. Journal of Econometrics,1996,72:85-134 CSCD被引 1    
引证文献 1

1 Jin Baisuo Em Algorithm of the Truncated Multinormal Distribution with Linear Restriction on the Variables Acta Mathematicae Applicatae Sinica-English Series,2018,34(1):155-162
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号