帮助 关于我们

返回检索结果

基于亮温光谱的红外背景压缩方法
Infrared Background Compression Method Based on Brightness Temperature Spectrum

查看参考文献10篇

文摘 大部分污染气体在红外波段具有明显的发射或吸收特征,被动傅里叶变换红外(FTIR)遥感技术可以对污染气体进行远距离探测和识别。当利用移动平台对污染气体进行遥测时,背景辐射是未知的,且光谱中包含大气等干扰物特征,需要研究相应的背景压缩方法,提取目标光谱特征。研究了基于亮温光谱的红外背景压缩方法,认为背景辐射在亮温光谱上是缓变的基线,并利用中光谱分辨率大气辐射传输模型(MODTRAN)软件包模拟大气干扰物特征,根据最小二乘拟合原理实现红外背景压缩。实验以氨气作为目标气体,以低平天空作为背景。结果表明,本方法能够成功扣除背景辐射和大气干扰特征,提取氨气的光谱特征,并计算了氨气的浓度程长积值。
其他语种文摘 Most pollutant gases have obvious absorbing or emitting features in the infrared band. Passive Fourier transform infrared (FTIR) remote sensing technology is used to detect and identify pollutant gases in a standoff distance. In the case of remote sensing pollutant gases on the mobile platform, the background is unknown and the spectrum includes interferents′ spectral features such as atmospheric gases, thus background compression method is needed to extract target spectral features. An infrared background compression method based on brightness temperature spectrum is proposed, in which the background radiance is referred as a slowly-varied baseline. The radiance transmitting simulation software named MODTRAN is used to simulate interferents′ spectral features such as atmospheric gases, and the infrared background compression is realized based on least-square fitting principle. The experiment takes ammonia as the target gas and the low altitude sky as the background. The results indicate that this method can effectively compress the background and interferents′ features, extract the ammonia′s spectral features and calculate the concentration-path-length.
来源 光学学报 ,2013,33(11):1130001-1-1130001-6 【核心库】
关键词 遥感 ; 红外 ; 亮温光谱 ; 背景压缩 ; 污染气体
地址

中国科学院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室, 安徽, 合肥, 230031

语种 中文
文献类型 研究性论文
ISSN 0253-2239
学科 自动化技术、计算机技术
文献收藏号 CSCD:5013773

参考文献 共 10 共1页

1.  Andreas Beil. Remote sensing of atmospheric pollution by passive FTIR spectrometry. SPIE. 3493,1998:32-44 CSCD被引 2    
2.  方勇华. 微弱光谱信号的探测与识别. 红外技术,1997,19(1):21-26 CSCD被引 4    
3.  Tom Burr. Overview of physical models and statistical approaches for weak gaseous plume detection using passive infrared hyperspectral imagery. Sensors,2006,6(12):1721-1750 CSCD被引 3    
4.  Toshiyasu Tarumi. Infinite impulse response filters for direct analysis of interferogram data from airborne passive Fourier transform infrared spectrometry. Vibrational Spectroscopy,2005,37(1):39-52 CSCD被引 3    
5.  Manolakis D. Statistical models for LWIR hyperspectral backgrounds and their applications in chemical agent detection. SPIE. 6565,2007:656525 CSCD被引 1    
6.  DiPietro Robert S. Hyperspectral matched filter with false-alarm mitigation. Opt Eng,2012,51(1):016202 CSCD被引 2    
7.  Jean-Marc Theriault. Remote sensing of chemical vapours by differential FTIR radiometry. International J Remote Sensing,2005,26(5):981-995 CSCD被引 1    
8.  Francois Bouffard. Background contributions in direct and differential Fourier transform LWIR measurements: a comparative analysis. International Journal of High Speed Electronics and Systems,2008,18(2):263-276 CSCD被引 1    
9.  Roland Harig. Toxic cloud imaging by infrared spectrometry: a scanning FTIR system for identification and visualization. Field Analytical Chemistry and Technology,2001,5(1/2):75-91 CSCD被引 12    
10.  吴瑾光. 近代傅里叶变换红外光谱技术及应用,1994:7-24 CSCD被引 1    
引证文献 5

1 崔方晓 基于正交子空间投影的污染气体自适应探测 光学学报,2014,34(7):730002-1-730002-6
CSCD被引 1

2 浮媛媛 基于多源亮度温度的城市典型植被分类研究 激光与光电子学进展,2015,52(7):072801-1-072801-6
CSCD被引 2

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号