碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响
Influence of carbon fiber preform structure on microstructure and mechanical properties of C/C-SiC composites fabricated by combined CVI-GSI method
查看参考文献27篇
文摘
|
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration, CVI)与气相渗硅法(gaseous silicon infiltration, GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m~2),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa, 51.75 GPa, 11.32 MPa·m~(1/2)。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。 |
其他语种文摘
|
Using carbon fiber cloth with different areal densities and tow sizes, two kinds of carbon fiber preforms with same carbon cloth laminated structure were produced through different z-direction stitching methods. Then,C/C-SiC composites were prepared by combining chemical vapor infiltration (CVI) with gas silicon infiltration (GSI). The influence of carbon fiber preform structure on the microstructure and mechanical properties of CVI-GSI C/C-SiC composites was studied. The results show that the density, phase composition, structure,and properties of the two composites prepared from preforms with the same fiber volume fraction and C/C preform density are significantly different. The smaller carbon fiber tow (IK) and carbon cloth surface density (92 g/m~2), as well as the larger voids left by lock stitching, provide more sufficient channels for the infiltration of Si vapor in the GSI reaction process. Thus T1 composite finally prepared has low porosity, uniform structure, and higher performance, with bending strength, modulus, and fracture toughness of 300.97 MPa, 51.75 GPa, and 11.32 MPa·m~(1/2), respectively. The comprehensive control of the initial preform structure and the C/C intermediate structure is the key to the preparation of high performance C/C-SiC composites by the CVI-GSI process. |
来源
|
材料工程
,2023,51(8):142-148 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2023.000150
|
关键词
|
C/C-SiC复合材料
;
预制体结构
;
气相渗硅
;
化学气相渗透
;
碳布叠层
|
地址
|
国防科技大学空天科学学院, 新型陶瓷纤维及其复合材料国家重点实验室, 长沙, 410073
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家重点研发计划项目
|
文献收藏号
|
CSCD:7629458
|
参考文献 共
27
共2页
|
1.
常宛云. C/C-SiC复合材料制备技术及其在航空航天领域的应用.
炭素,2015(4):11-17
|
CSCD被引
1
次
|
|
|
|
2.
虎琳. C/C-SiC炭陶复合材料的制备及应用进展.
炭素,2017(2):43-47
|
CSCD被引
2
次
|
|
|
|
3.
Krenkel W. C/C-SiC composites for space applications and advanced friction systems.
Materials Science and Engineering:A,2005,412(1/2):177-181
|
CSCD被引
102
次
|
|
|
|
4.
Naslain R. SiC-matrix composites:nonbrittle ceramics for thermo-structural application.
International Journal of Applied Ceramic Technology,2005,2(2):75-84
|
CSCD被引
45
次
|
|
|
|
5.
Stahl V. C/C-SiC component for metallic phase change materials.
International Journal of Applied Ceramic Technology,2020,17(5):2040-2050
|
CSCD被引
1
次
|
|
|
|
6.
Fan S W. Microstructure and properties of a new structure-function integrated C/C-SiC brake material.
Journal of Alloys and Compounds,2018,769:239-249
|
CSCD被引
7
次
|
|
|
|
7.
Zhou X. Friction and wear properties of C/C-SiC braking composites.
Ceramics International,2012,38(3):2467-2473
|
CSCD被引
11
次
|
|
|
|
8.
Krenkel W. C/C-SiC composites for advanced friction systems.
Advanced Engineering Materials,2002,4(7):427-436
|
CSCD被引
93
次
|
|
|
|
9.
马青松. C/SiC复合材料在超燃冲压发动机中的应用研究进展.
无机材料学报,2013,28(3):247-255
|
CSCD被引
28
次
|
|
|
|
10.
Yao J J. Effect of C/SiC volume ratios on mechanical and oxidation behaviors of Cf/C-SiC composites fabricated by chemical vapor infiltration technique.
Acta Metallurgica Sinica,2022,35(5):801-811
|
CSCD被引
1
次
|
|
|
|
11.
Liu S H. Microstructure and mechanical properties of SiC and carbon hybrid fiber reinforced SiC matrix composite.
International Journal of Applied Ceramic Technology,2011,8(2):308-316
|
CSCD被引
10
次
|
|
|
|
12.
He F. Improvement of the strength and toughness of carbon fiber/SiC composites viachemical vapor infiltration-grown SiC nanowire interphases.
Ceramics International,2018,44(2):2311-2319
|
CSCD被引
5
次
|
|
|
|
13.
Zhou C C. Preparation of 3D-Cf/SiC composites at low temperatures.
Materials Science and Engineering:A,2008,488(1/2):569-572
|
CSCD被引
6
次
|
|
|
|
14.
Zhang C. The effect of high temperature heat treatment on the tribological property of a carbon fiber/pyrolytic carbon/silicon carbide composite using polycarbosilane.
Ceramics International,2020,46(4):4493-4501
|
CSCD被引
2
次
|
|
|
|
15.
安娜. PIP法制备C/C-SiC复合材料研究进展.
炭素,2015(1):15-20
|
CSCD被引
2
次
|
|
|
|
16.
吴小军. RMI法制备穿刺C/C-SiC复合材料的微结构及烧蚀性能.
稀有金属材料与工程,2021,50(11):4023-4030
|
CSCD被引
3
次
|
|
|
|
17.
Manish P. High temperature C/C-SiC composite by liquid silicon infiltration.
Bulletin of Materials Science,2012,35(1):63-73
|
CSCD被引
4
次
|
|
|
|
18.
Liu L. Microstructure and properties of C/C-SiC composites prepared by reactive melt infiltration at low temperature in vacuum.
Ceramics International,2020,46(6):8469-8472
|
CSCD被引
4
次
|
|
|
|
19.
Choi J H. Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers.
Journal of Ceramic Processing Research,2019,20(1):48-53
|
CSCD被引
1
次
|
|
|
|
20.
Wan F. Structure and flexural properties of 3Dneedled carbon fiber reinforced carbon and silicon carbide(C/C-SiC)composites fabricated by gaseous and liquid silicon infiltration.
Ceramics International,2019,45(14):17978-17986
|
CSCD被引
1
次
|
|
|
|
|