喷气协助航行体入水空泡流动特性实验研究
Experimental Investigation on Cavity Flow Characteristics of Water Entry of Vehicle With Gas Jet Cavitator
查看参考文献13篇
文摘
|
为研究向前喷气协助航行体入水通气空泡多相流动特性,开展了喷气协助航行体入水实验。分析了入水过程中射流穿透水面开口空泡的形成及发展,探讨了不同喷气量、入水角度对空泡形态、射流长度等的影响。实验结果表明:在开口空泡形成过程中,自由液面存在不同区域(扰动区、过渡区及空泡形成区)的转变,这些区域的形成与航行体位置有关;在航行体穿越气液界面之后,射流形成的空泡壁面由于黏性剪切流动存在显著的K-H失稳,且小喷气系数下存在空泡湮灭现象。在穿透液面过程中,空泡直径和射流长度均呈减小趋势;开口空泡深度、空泡直径和射流长度随喷气系数呈线性增长,但受入水角度的影响有限。 |
其他语种文摘
|
To investigate the ventilated cavity flow characteristics of the vehicle water entry with gas jet cavitator,experiments of the vehicle water entry with gas jet cavitator were performed. The formation and development of the open cavity in the process of water entry were analyzed,and the effects of different ventilation rates and water entry angles on the cavity shape and gas jet length were discussed. The results indicate that there are different flow regions (i. e.,disturbance region, transition region,and the cavity develop region) during the formation of the open cavity,and it is related to the position of the vehicle. After the vehicle penetrates the air-water interface, the cavity surface(gas-liquid interface) exhibits the K-H instability significantly due to the viscous shear flow. The cavity collapse phenomenon was observed under the low ventilation coefficient. As the vehicle penetrates the water surface, the cavity diameter and gas jet length decrease gradually. The open cavity depth,cavity diameter and gas jet length increase linearly with the ventilation coefficient. The affect of the water entry angle is limited. |
来源
|
弹道学报
,2022,34(1):1-8,97 【核心库】
|
DOI
|
10.12115/j.issn.1004-499X(2022)01-001
|
关键词
|
航行体
;
气射流
;
空泡
;
流动特性
|
地址
|
1.
中山大学海洋工程与技术学院, 广东, 广州, 510275
2.
哈尔滨工程大学航天与建筑工程学院, 黑龙江, 哈尔滨, 150001
3.
重庆长安工业(集团)有限公司, 重庆, 401120
4.
南方海洋科学与工程广东省实验室(珠海), 南方海洋科学与工程广东省实验室(珠海), 广东, 珠海, 519000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
武器工业 |
基金
|
国家自然科学基金
;
广东省自然科学基金
;
中山大学科研启动费
|
文献收藏号
|
CSCD:7186184
|
参考文献 共
13
共1页
|
1.
Jiang Y. Experimental investigation of ventilated supercavitation with gas jet cavitator.
Physics of Fluids,2018,30(1):012103
|
CSCD被引
6
次
|
|
|
|
2.
Karman T. The impact on seaplane floats during landing.
National Advisory Committee for Aeronatics,1929,321:309-313
|
CSCD被引
1
次
|
|
|
|
3.
Chuan S L. Experiments on flat-bottom slamming.
Journal of Ship Research,1966,10(1):10-17
|
CSCD被引
24
次
|
|
|
|
4.
Chuang S L. Experiments on slamming of wedge-shaped bodies.
Journal of Ship Research,1967,11(3):190-198
|
CSCD被引
20
次
|
|
|
|
5.
Huera-Huarte F J. Experimental investigation of water slamming loads on panels.
Ocean Engineering,2011,38(11/12):1347-1355
|
CSCD被引
11
次
|
|
|
|
6.
Okada S. On the water impact and elastic response of a flat plate at small impact angles.
Journal of Marine Science & Technology,2000,5(1):31-39
|
CSCD被引
8
次
|
|
|
|
7.
Ermanyuk E V. Impact of a disk on shallow water.
Journal of Fluids & Structures,2005,20(3):345-357
|
CSCD被引
3
次
|
|
|
|
8.
曹正林. 空气层对高速三体船连接桥砰击压力峰值影响二维仿真研究.
船舶力学,2008,12(2):237-242
|
CSCD被引
3
次
|
|
|
|
9.
Jiang Y. Formation and steady flow characteristics of ventilated supercavity with gas jet cavitator.
Ocean Engineering,2017,142:87-93
|
CSCD被引
4
次
|
|
|
|
10.
Jiang Y. Water entry of a constraint posture body under different entry angles and ventilation rates.
Ocean Engineering,2018,153:53-59
|
CSCD被引
15
次
|
|
|
|
11.
Speirs N B. The water entry of a sphere in a jet.
Journal of Fluid Mechanics,2019,863:956-968
|
CSCD被引
4
次
|
|
|
|
12.
Banks R B. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface.
Journal of Fluid Mechanics,1963,15(1):13-34
|
CSCD被引
5
次
|
|
|
|
13.
Hwang H Y. A water model study of impinging gas jets on liquid surfaces.
Metallurgical & Materials Transactions B,2012,43(2):302-315
|
CSCD被引
4
次
|
|
|
|
|