MUSER可见度数据积分方法与实现
Integral Method and Implementation of MUSER Visibility Data
查看参考文献13篇
文摘
|
射电观测是研究太阳活动的重要探测手段。我国明安图射电频谱日像仪(MingantU SpEctral Radioheliograph,MUSER)主要用于研究太阳爆发活动初始能量释放区的物理过程,其观测将在太阳射电成像开辟一个新的窗口。成像处理是数据处理的重要组成部分,如何提高成像质量是当前数据处理的研究重点。首先介绍了射电干涉成像的基本理论,随后分析了对观测得到的可见度数据积分的必要性,细致讨论了短时段可见度数据叠加求平均和长时段UV覆盖叠加两种积分方法,并给出了完整的实现。通过实现代码与实验验证,两种积分均可以有效提高信噪比,图像质量明显提高。 |
其他语种文摘
|
Radio observation is the most important detection means to research the solar activity. The MingantU SpEctral Radioheliograph (MUSER) is mainly used to research the physical process in the initial energy-releasing area during the solar activity and its observation will open a new window in solar radio imaging. Imaging processing is an important part of MUSER data processing and improving the image quality is the most important research of data processing. Firstly,we introduce the basic theory of radio interference imaging. Secondly, we analyze the necessity of visibility data integration obtained from the MUSER observations. Then,we discuss in detail the two kinds of integration method which are short-term visibility data superimposed averaging and long-term UV overlay stacking and give out a complete realization. Through the method of verification and the validity of completion,the two kinds of integration method can effectively improve the signal-to-noise ratio and the quality of images. |
来源
|
天文研究与技术
,2018,15(1):78-86 【核心库】
|
关键词
|
MUSER
;
UV平均积分
;
UV覆盖积分
;
综合孔径成像
|
地址
|
1.
昆明理工大学, 云南省计算机技术应用重点实验室, 云南, 昆明, 650500
2.
中国科学院云南天文台, 云南, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6153485
|
参考文献 共
13
共1页
|
1.
向德琳.
射电天文观测,1990
|
CSCD被引
3
次
|
|
|
|
2.
Gary D E.
Solar and space weather radiophysics-current status and future developments,2004
|
CSCD被引
1
次
|
|
|
|
3.
Wang W. Calibration and data processing for a Chinese spectral radioheliograph in the decimeter wave range.
Publications of the Astronomical Society of Japan,2013,65(sp1):2226-2237
|
CSCD被引
1
次
|
|
|
|
4.
颜毅华. 关于太阳厘米-分米波段频谱日像仪研究进展.
天文研究与技术-国家天文台台刊,2006,3(2):91-98
|
CSCD被引
22
次
|
|
|
|
5.
梅盈.
MUSER海量数据预处理关键技术研究,2015
|
CSCD被引
2
次
|
|
|
|
6.
Nakajima H. The Nobeyama radioheliograph.
Proceedings of the IEEE,1994,82(5):705-713
|
CSCD被引
20
次
|
|
|
|
7.
Grechnev V V. The Siberian Solar Radio Telescope:the current state of the instrument,observations,and data.
Solar Physics,2003,216(1/2):239-272
|
CSCD被引
9
次
|
|
|
|
8.
Wang F. Distributed data-processing pipeline for Mingantu Ultrawide Spectral Radioheliograph.
Publications of the Astronomical Society of the Pacific,2015,127(950):383-396
|
CSCD被引
10
次
|
|
|
|
9.
Wei S. OpenCluster:a flexible distributed computing framework for astronomical data processing.
Publications of the Astronomical Society of the Pacific,2016,129(972):1-14
|
CSCD被引
1
次
|
|
|
|
10.
Thompson A R.
Interferometry and synthesis in radio astronomy,2001:648-648
|
CSCD被引
2
次
|
|
|
|
11.
罗洪礼.
MUSER成像中的Grid技术研究与实现,2016
|
CSCD被引
1
次
|
|
|
|
12.
Segransan D. Observability and UV coverage.
New Astronomy Reviews,2003,51(8/9):597-603
|
CSCD被引
1
次
|
|
|
|
13.
Mei Y. The data format preprocessing system for Chinese spectral radioheliograph.
ICIC Express Letters,Part B:Applications,2015,6(5):1467-1472
|
CSCD被引
1
次
|
|
|
|
|