Writing nanopores on a ZnS crystal with ultrafast Bessel beams
超快贝塞尔光束在硫化锌晶体表面制备纳米孔
查看参考文献33篇
文摘
|
Zinc sulfide(ZnS)crystal is one of the important materials used to make the wide-spectrum infrared window.The ultrafast laser technology for manufacturing the nanopores with high aspect ratio provides an important approach to fabricate the photonic devices such as mid-infrared waveguide Fourier transform spectrometer etc.In this paper,a 40-times-demagnification ultrafast laser direct-writing system was built with a 4f system and a Gaussian-Bessel beam generated by a quartz axicon and a Yb:KGW laser source that operated at a wavelength of 1 030 nm,a repetition rate of 100 kHz and a pulse width tunable from 223 fs to 20 ps.When the pulse energy was changed from 36 μJ to 63 μJ and the pulse duration was changed from 12.5 ps to 20 ps,the nanopore structure with a diameter of 80~320 nm was successfully written on the ZnS crystal.The surface morphology,diameter and depth of the nanopores were determined by FIB(Focused Ion Beams)ablation and SEM(Scanning Electron Microscopy)imaging.The influence of laser pulse energy and pulse width on the nanopores was studied.The results show that when the pulse width is 20 ps and the pulse energy is 48 μJ,the depth of a nanopore is about 270 μm. |
其他语种文摘
|
硫化锌(ZnS)晶体是重要的宽光谱红外窗口材料,高深径比纳米孔的超快激光制造技术为中红外波导傅立叶变换光谱仪等光子器件的实现提供了重要的技术途径。本文采用中心波长为1 030 nm、重复频率为100 kHz、脉冲宽度为223 fs~20 ps可调的Yb: KGW激光光源,用石英锥镜产生高斯-贝塞尔光束,并用4f系统构建了40倍缩束的超快激光直写系统。在能量为36~63 μJ,脉宽为12.5~20 ps的情况下,在ZnS晶体上成功刻写了直径为80~320 nm的纳米孔结构。通过聚焦离子束(FIB)剥蚀和扫描电子显微镜(SEM)成像确定了纳米孔隙表面形貌、直径及深度信息。研究了激光脉冲能量、脉冲宽度对纳米孔隙的影响。结果表明,在20 ps脉冲宽度、48 μJ脉冲能量的激光参数下,纳米孔隙的深度约为270 μm。 |
来源
|
中国光学(中英文)
,2021,14(1):213-225 【核心库】
|
DOI
|
10.37188/co.2020-0101
|
关键词
|
ZnS crystal
;
high aspect ratio nanopores
;
photonic devices
;
Gaussian-Bessel beam
|
地址
|
1.
Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, 710119
2.
University of Chinese Academy of Sciences, Beijing, 100049
3.
Research Center of Semiconductor Lighting and Information Engineering Technology, South China University of Technology, Guangzhou, 510641
4.
Northwestern Polytechnical University, School of Electronics and Information, Center for Optical Imagery Analysis and Learning, Shaanxi, Xi'an, 710072
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-1531 |
学科
|
电子技术、通信技术 |
基金
|
Supported by National Key Research and Development Program
;
国家自然科学基金
|
文献收藏号
|
CSCD:6894634
|
参考文献 共
33
共2页
|
1.
Lin H T. Mid-infrared integrated photonics on silicon: a perspective.
Nanophotonics,2018,7(2):393-420
|
CSCD被引
25
次
|
|
|
|
2.
An Q. Mid-infrared waveguides in zinc sulfide crystal.
Optical Materials Express,2013,3(4):466-471
|
CSCD被引
4
次
|
|
|
|
3.
Hu J J. Feature issue introduction: mid-IR photonic materials.
Optical Materials Express,2013,3(9):1571-1575
|
CSCD被引
9
次
|
|
|
|
4.
Pile D. Extending opportunities.
Nature Photonics,2012,6(7):407
|
CSCD被引
4
次
|
|
|
|
5.
Fu L G. Defects in CVDZnS.
Rare Metals,2011,30(4):387-391
|
CSCD被引
1
次
|
|
|
|
6.
Bhuyan M K. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams.
Applied Physics Letters,2014,104(2):021107
|
CSCD被引
17
次
|
|
|
|
7.
Rosen J. Synthesis of an arbitrary axial field profile by computer-generated holograms.
Optics Letters,1994,19(11):843-845
|
CSCD被引
3
次
|
|
|
|
8.
Stoian R. Ultrafast Bessel beams: advanced tools for laser materials processing.
Advanced Optical Technologies,2018,7(3):165-174
|
CSCD被引
12
次
|
|
|
|
9.
Bhuyan M K. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams.
Applied Physics Letters,2010,97(8):081102
|
CSCD被引
16
次
|
|
|
|
10.
Bhuyan M K. Laser micro-and nanostructuring using femtosecond Bessel beams.
The European Physical Journal Special Topics,2011,199(1):101-110
|
CSCD被引
3
次
|
|
|
|
11.
Mitra S. Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining.
Applied Optics,2015,54(24):7358-7365
|
CSCD被引
10
次
|
|
|
|
12.
Zhang G D. Femtosecond laser Bessel beam welding of transparent to nontransparent materials with large focal-position tolerant zone.
Optics Express,2018,26(2):917-926
|
CSCD被引
4
次
|
|
|
|
13.
Meyer R. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass.
Applied Physics Letters,2019,114(20):201105
|
CSCD被引
5
次
|
|
|
|
14.
Rapp L. High aspect ratio micro-explosions in the bulk of sapphire generated by femtosecond Bessel beams.
Scientific Reports,2016,6:34286
|
CSCD被引
6
次
|
|
|
|
15.
Zhang F. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam.
Optics Express,2018,26(26):34016-34030
|
CSCD被引
6
次
|
|
|
|
16.
Li Y P. Fabrication of micro hole array on the surface of CVD ZnS by scanning ultrafast pulse laser for antireflection.
Optical Materials,2017,66:356-360
|
CSCD被引
2
次
|
|
|
|
17.
Rudenko A. Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass.
Physical Chemistry Chemical Physics,2018,20(8):5887-5899
|
CSCD被引
5
次
|
|
|
|
18.
王晓雷. 飞秒激光激发空气电离的阈值研究.
物理学报,2008,57(1):354-357
|
CSCD被引
12
次
|
|
|
|
19.
Stoian R. High-resolution material structuring using ultrafast laser nondiffractive beams.
Advances in Physics: X,2019,4(1):1659180
|
CSCD被引
3
次
|
|
|
|
20.
Glezer E N. Ultrafast-laser driven micro-explosions in transparent materials.
Applied Physics Letters,1997,71(7):882-884
|
CSCD被引
48
次
|
|
|
|
|