帮助 关于我们

返回检索结果

弱有限元方法在线弹性问题中的应用
WEAK GALERKIN FINITE ELEMENT METHOD FOR LINEAR ELASTICITY PROBLEMS

查看参考文献84篇

张然  
文摘 本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.
其他语种文摘 This article considers the application of the weak Galerkin finite element (WG) method to linear elasticity problems. The WG method is a generalization of the traditional finite element method, which is used to solve numerical solutions of partial differential equations. In WG, the weak function, a piecewise polynomial function that is defined both inside the element and on the boundary of the element, is used as an approximate function and weak differential operators are given correspondingly. Moreover, stabilizers are introduced to keep the weak continuity of the approximate function. In the WG method, partitions could be arbitrary polygons or polyhedrons that satisfies the shape regular conditions. In addition the numerical format and the approximate function are easy to construct. In this paper, we introduce the application of the WG method in solving linear elasticity problems by solving three common problems in the numerical methods for linear elasticity problems, namely: the coerciveness, locking property, and the symmetry of stress tensor.
来源 计算数学 ,2020,42(1):1-17 【核心库】
关键词 弱有限元方法 ; 线弹性方程 ; 闭锁现象 ; 混合有限元方法
地址

吉林大学数学学院, 长春, 130012

语种 中文
文献类型 研究性论文
ISSN 0254-7791
学科 数学
基金 国家自然科学基金 ;  中国教育部长江学者计划以及吉林大学符号计算与知识工程教育部重点实验室等资助
文献收藏号 CSCD:6711137

参考文献 共 84 共5页

1.  Amara M. Equilibrium finite elements for the linear elastic problem. Numer. Math,1979,33:367-383 CSCD被引 4    
2.  Arnold D N. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal,2002,39:1749-1779 CSCD被引 74    
3.  Arnold D N. PEERS, a new mixed finite element for plane elasticity. Japan J. Appl. Math,1984,1:347-367 CSCD被引 15    
4.  Arnold D N. Well-posedness of the fundamental boundary value problems for constained anisotropic elastic materials. Arch. Rational Mech. Anal,1987,98:143-165 CSCD被引 2    
5.  Arnold D N. Nonconforming mixed elements for elasticity, Dedicated to Jim Douglas, Jr. on the occasion of his 75th birthday. Math. Models Methods Appl. Sci,2003,13:295-307 CSCD被引 7    
6.  Babuska I. Locking effects in the finite element approximation of elasticity problems. Numer. Math,1992,62:439-463 CSCD被引 18    
7.  Bao G. A robust numerical method for the random interface grating problem via shape calculus, weak Galerkin method, and low-rank approximation. J. Sci. Comp,2018:1-24 CSCD被引 1    
8.  Beirao da V L. Basic principles of virtual element methods. Math. Models Methods Appl. Sci,2013,23(1):199-214 CSCD被引 19    
9.  Beirao da V L. Virtual elements for linear elasticity problems. SIAM J. Numer. Anal,2013,51:794-812 CSCD被引 11    
10.  Brenner S C. Korn's inequalities for piecewise H~1 vector fields. Math. Comp,2003,73:1067-1087 CSCD被引 10    
11.  Brenner S C. Linear finite element methods for planar linear elasticity. Math. Comp,1992,59:321-338 CSCD被引 34    
12.  Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Francaise Automat. Informat. Recherche Operationnelle Ser,1974,8:129-151 CSCD被引 52    
13.  Brezzi F. Mixed and Hybrid Finite Element Methods,1991 CSCD被引 173    
14.  Brezzi F. Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal,2005,43(5):1872-1896 CSCD被引 7    
15.  Cai Z. First-order system least squares for the Stokes equations, with application to linear elasticity. SIAM J. Numer. Anal,1997,34:1727-1741 CSCD被引 8    
16.  Chen G. ROBUST GLOBALLY DIVERGENCE-FREE WEAK GALERKIN METHODS FOR STOKES EQUATIONS. J. Comput. Math,2016,34:549-572 CSCD被引 14    
17.  Chen G. A robust weak Galerkin finite element method for linear elasticity with strong symmeric stresses. Comput. Methods Appl. Math,2016,16:389-408 CSCD被引 10    
18.  Chen L. An auxiliary space multigrid preconditioner for the weak Galerkin method. Comput. Math. Appl,2015,70(4):330-344 CSCD被引 6    
19.  Cockburn B. Analysis of HDG methods for Stokes flow. Math. Comput,2011,80(274):723-760 CSCD被引 2    
20.  Guan Q. Weak Galerkin finite element methods for a second-order elliptic variational inequality. Comput. Methods Appl. Mech. Engrg,2018,337:677-688 CSCD被引 3    
引证文献 1

1 何朝葵 基于弱有限元法的渗流分析 岩土工程学报,2023,45(7):1526-1532
CSCD被引 1

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号