射电天文接收机四通道均衡放大模块研制
The Design of Four Channel Equalization Amplifier Module for Radio Astronomy Receiver
查看参考文献11篇
宁云炜
1,2,3
闫浩
1,2,3
*
曹亮
1,2,3
马军
1,2,3
李笑飞
1,2,3
刘烽
1,2,3
陈勇
1,2,3
文摘
|
中频系统是射电天文接收机的重要组成部分。接收机L,S,C和K波段的左圆极化和右圆极化信号在高频仓通过下变频转换为中频信号,中频信号通过同轴电缆传送到观测室。观测室距离射电望远镜高频仓较远,因此线损较大,且不同频率的信号损耗不同,频率越高损耗越大,导致中频信号功率较小且增益平坦度随频率增加而降低。设计了四通道均衡放大模块,提高中频信号增益并补偿增益平坦度。该模块的均衡器采用集总元件和微带线相结合的方式,具有结构紧凑、易于集成、成本低的优点。测试结果表明,在6倍频带宽内,均衡量≥8 dB,均衡后功率平坦度≤3.5 dBm,回波损耗≤-15 dB,满足射电天文中频检测系统的要求。 |
其他语种文摘
|
IF system of radio astronomy receiver is an important part of the receiver. The left circular polarization and right circular polarization signals of L,S,C and K bands in the receiver become IF signals through down conversion in the high frequency bin. IF signals are transmitted to the observation chamber by coaxial cable. The observation chamber is far from the radio telescope's high frequency chamber,so the line loss is large,and the signal loss at different frequencies is different. The higher the frequency is,the greater the loss is,resulting in the lower power of intermediate frequency signal and the decrease of gain flatness with the increase of frequency. A four-channel equalization amplifier module is designed to improve the gain of IF signal and compensate the gain flatness. The equalizer of this module adopts the combination of lumped element and microstrip line,which has the advantages of compact structure,easy integration and low cost. The test results show that the equalization amplifying module can meet the requirements of intermediate frequency system of radio astronomy receiver with equalization measure ≥8 dB,power flatness ≤3.5 dBm and return loss ≤-15 dB within 6x frequency band width. |
来源
|
天文研究与技术
,2022,19(5):432-437 【扩展库】
|
DOI
|
10.14005/j.cnki.issn1672-7673.20210930.001
|
关键词
|
均衡器
;
放大模块
;
接收机
;
射电天文
;
阻抗匹配
|
地址
|
1.
中国科学院新疆天文台, 新疆, 乌鲁木齐, 830011
2.
中国科学院射电天文重点实验室, 中国科学院射电天文重点实验室, 江苏, 南京, 210033
3.
新疆微波技术重点实验室, 新疆微波技术重点实验室, 新疆, 乌鲁木齐, 830011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-7673 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
;
新疆维吾尔自治区自然科学基金
|
文献收藏号
|
CSCD:7304900
|
参考文献 共
11
共1页
|
1.
谢青梅. W波段微波功率模块的研制.
微波学报,2018,34(增2):30-32
|
CSCD被引
1
次
|
|
|
|
2.
Carter M A. High efficiency E-band MPM power amplifier for high-resolution airborne radar.
Proceedings of the 8th International Vacuum Electronics Conference (IVEC),2017
|
CSCD被引
1
次
|
|
|
|
3.
Gourav C. Non-reflective broadband microwave gain equalizer for EW applications.
Proceedings of the MTT-S International Microwave and RF Conference (IMARC),2019
|
CSCD被引
1
次
|
|
|
|
4.
Kondakov D V. The frequency discriminator in 20-2250 MHz frequency band with parallel low and high frequency equalizer channels.
Proceedings of the International Conference on Actual Problems of Electron Devices Engineering (APEDE),2016
|
CSCD被引
1
次
|
|
|
|
5.
Yasushi I. L-band SiGe HBT active differential equalizers with variable inclination and position of the positive or negative gain slopes.
Proceedings of the 46th European Microwave Conference (EuMC):2106
|
CSCD被引
1
次
|
|
|
|
6.
徐阳.
3 mm增益均衡器关键技术研究,2019
|
CSCD被引
1
次
|
|
|
|
7.
李玺.
三毫米功率均衡技术研究,2020
|
CSCD被引
1
次
|
|
|
|
8.
Chia C. Miniaturized wideband bandpass filter in IPD technology with passive equalizer to improve the flatness of insertion loss response.
Proceedings of the IEEE CPMT Symposium Japan (ICSJ),2017
|
CSCD被引
1
次
|
|
|
|
9.
Hao P. Substrate integrated waveguide equalizers and attenuators with surface resistance.
IEEE Transactions on Microwave Theory and Techniques,2020,68(4):1487-1495
|
CSCD被引
1
次
|
|
|
|
10.
Xu X N. A novel design and realization of microstrip lumped-like amplitude equalizer.
Proceedings of the IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT),2016
|
CSCD被引
1
次
|
|
|
|
11.
Pierre J.
Microwave amplifier and active circuit design using the real frequency technique,2016:207-218
|
CSCD被引
1
次
|
|
|
|
|