Enhancing synchronizability by rewiring networks
查看参考文献35篇
文摘
|
According to different forms of synchronized region, complex networks are divided into type I (unbounded synchronization region) and type II (bounded synchronization region) networks. This paper presents a rewiring algorithm to enhance the synchronizability of type I and type II networks. By utilizing the algorithm for an unweighted and undirected network, a better synchronizability of network with the same number of nodes and edges can be obtained. Numerical simulations on several different network models are used to support the proposed procedure. The relationship between different topological properties of the networks and the number of rewirings are shown. It finds that the final optimized network is independent of the initial network, and becomes homogeneous. In addition the optimized networks have similar structural properties in the sense of degree, and node and edge betweenness centralities. However, they do not have similar cluster coefficients for type II networks. The research may be useful for designing more synchronizable networks and understanding the synchronization behaviour of networks. |
来源
|
Chinese Physics. B
,2010,19(8):080207-1-080207-8 【核心库】
|
DOI
|
10.1088/1674-1056/19/8/080207
|
关键词
|
synchronizability
;
rewire networks
;
complex networks
;
optimized network
;
network structural property
|
地址
|
1.
Department of Automation and Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004
2.
Department of Information and Engineering, Shenyang Institute of Engineering, Shenyang, 110136
3.
School of Information Science and Engineering, Northeastern University, Shenyang, 110004
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-1056 |
学科
|
物理学 |
基金
|
Science Foundation of the Education Bureau of Liaoning Province of China
|
文献收藏号
|
CSCD:3899868
|
参考文献 共
35
共2页
|
1.
Newman M E J.
SIAM Rev,2003,45:167
|
CSCD被引
989
次
|
|
|
|
2.
Albert R.
Rev. Mod. Phys,2002,74:47
|
CSCD被引
1183
次
|
|
|
|
3.
Dorogovtsev S N.
Adv. Phys,2002,51:1079
|
CSCD被引
186
次
|
|
|
|
4.
Li Z Q.
Chin. Phys. B,2009,18:1674
|
CSCD被引
2
次
|
|
|
|
5.
Zou Y L. Pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions.
Chin. Phys. B,2009,18:3337
|
CSCD被引
9
次
|
|
|
|
6.
Olfati-Saber R.
Proc. IEEE,2007,95:215
|
CSCD被引
364
次
|
|
|
|
7.
Korniss G.
Science,2003,299:677
|
CSCD被引
3
次
|
|
|
|
8.
Barbarossa S.
IEEE Trans. Signal Process,2007,55:3456
|
CSCD被引
2
次
|
|
|
|
9.
Pecora L M.
Phys. Rev. Lett,1998,80:2109
|
CSCD被引
140
次
|
|
|
|
10.
Kocarev L.
Chaos,2005,15:024101
|
CSCD被引
13
次
|
|
|
|
11.
Wang X F.
IEEE Circuits Syst. I,2002,49:54
|
CSCD被引
2
次
|
|
|
|
12.
Barahona M.
Phys. Rev. Lett,2002,89:054101
|
CSCD被引
121
次
|
|
|
|
13.
Jalili M.
Int. J. Circuit Theory Appl,2007,35:611
|
CSCD被引
2
次
|
|
|
|
14.
Chavez M.
Phys. Rev. Lett,2005,94:218701
|
CSCD被引
24
次
|
|
|
|
15.
Jalili M.
Phys. Rev. E,2008,78:016105
|
CSCD被引
5
次
|
|
|
|
16.
Wang X.
Phys. Rev. E,2007,75:056205
|
CSCD被引
8
次
|
|
|
|
17.
Motter A E.
Europhys. Lett,2005,69:334
|
CSCD被引
28
次
|
|
|
|
18.
Motter A E.
Phys. Rev. E,2005,71:016116
|
CSCD被引
31
次
|
|
|
|
19.
Donetti L.
Phys. Rev. Lett,2005,95:188701
|
CSCD被引
28
次
|
|
|
|
20.
Donetti L.
J. Phys. A: Math. Theor,2008,41:224008
|
CSCD被引
4
次
|
|
|
|
|