金星内部结构与动力学研究进展
Recent Advance in the Interior Structure and Dynamics of Venus
查看参考文献79篇
文摘
|
金星是一个与地球在大小、质量、组成和离太阳的距离等方面都非常相似的行星,但是现今金星不存在类似地球上的板块构造运动,也没有内生磁场。根据金星的重力和地形的研究显示金星的岩石圈比较厚。金星的大地水准面和地形的比值(导纳)比较大、相关性也很高,表明金星内部存在全球性的动力学过程。金星上存在约10个类似地球上夏威夷下方的地幔柱,最新的金星快车探测资料显示其中几个地幔柱存在近期的火山活动。另外对金星陨石坑数据的分析表明金星表面比较年轻,平均年龄大约为5亿年,这暗示着金星可能发生过全球性的表面更新,但金星的表面更新是一个灾难性的还是均匀的过程则存在很大的争议。同样存在争议的问题是金星过去是否存在类似当今地球的板块构造运动,是一直处于类似现今金星的停滞盖层对流,还是处于一种完全不同的对流模式?总的来说,金星的地幔对流模式与地球的以板块构造为特征的地幔对流模式显著不同。回顾了金星的重力、地形和表面构造等主要表面观测及其对金星内部结构和动力学的约束,总结了近年来对金星内部结构与动力学的一些认识,并对未来研究提出展望。 |
其他语种文摘
|
Venus is similar to the Earth in size,mass,composition and distance to the sun.However,Venus has neither plate tectonics nor dynamo that exists on the Earth.The lithosphere of Venus is very thick based on its topography and gravity.The admittance and correlation between Venusian geoid and topography are very high,suggesting that they are strongly influenced by the internal dynamical process of Venus.Analyses show that there may be 10 Hawaii-like mantle plumes in Venusian mantle.Data from Venus Express has shown evidence for recent active volcanism among several of these plumes.The distribution of impact craters on Venus shows that Venusian surface has a young age and the age is averaged about 500 Ma,suggesting that Venus may have experienced a global resurfacing event.However,whether this resurfacing is catastrophic or equilibrium is still under debate.It is also unclear whether Venus had plate tectonics in the past,is it always in stagnant lid regime,or might it have an entirely different mode?In general,the style of mantle convection on Venus is quite different from that of the Earth which is manifested by the plate tectonics.Here we reviewed the main observations including gravity,topography and surface tectonics which provide constrains on the interior structure and dynamics of Venus,and recent advance in the interior structure and dynamics of Venus.This review aims to provide new insights into the interior dynamics of Venus. |
来源
|
地球科学进展
,2020,35(9):912-923 【核心库】
|
DOI
|
10.11867/j.issn.1001-8166.2020.075
|
关键词
|
金星
;
表面更新
;
板块构造
;
地幔对流
;
地幔柱
|
地址
|
1.
中国科学院海洋研究所, 中国科学院海洋地质与环境重点实验室, 山东, 青岛, 266071
2.
青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室, 山东, 青岛, 266061
3.
中国科学技术大学地球和空间科学学院, 安徽, 合肥, 230026
4.
中国科学院比较行星学卓越中心, 中国科学院比较行星学卓越中心, 安徽, 合肥, 230026
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-8166 |
学科
|
天文学 |
基金
|
国家自然科学基金青年科学基金项目
;
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:6834519
|
参考文献 共
79
共4页
|
1.
Turcotte D L.
Geodynamics,2002
|
CSCD被引
51
次
|
|
|
|
2.
Konopliv A S. Venus gravity: 180th degree and order model.
Icarus,1999,139(1):3-18
|
CSCD被引
11
次
|
|
|
|
3.
Phillips R J. Geological evolution of Venus:Rises, plains,plumes,and plateaus.
Science,1998,279(5356):1492-1497
|
CSCD被引
3
次
|
|
|
|
4.
Smrekar S E. Recent hotspot volcanism on Venus from VIRTIS emissivity data.
Science,2010,328(5978):605-608
|
CSCD被引
11
次
|
|
|
|
5.
Smrekar S E. Venusian highlands:Geoid to topography ratios and their implications.
Earth and Planetary Science Letters,1991,107(3/4):582-597
|
CSCD被引
5
次
|
|
|
|
6.
Bindschadler D L. Coldspots and hotspots-global tectonics and mantle dynamics of Venus.
Journal of Geophysical Research-Planets,1992,97(E8):13495-13532
|
CSCD被引
1
次
|
|
|
|
7.
Yang An. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus.
Planetary and Space Science,2016,129:24-31
|
CSCD被引
3
次
|
|
|
|
8.
Kiefer W S. A mantle plume model for the equatorial highlands of Venus.
Journal of Geophysical Research-Planets,1991,96:20947-20966
|
CSCD被引
6
次
|
|
|
|
9.
Simons M. Localization of gravity and topography:Constraints on the tectonics and mantle dynamics of Venus.
Geophysical Journal International,1997,131(1):24-44
|
CSCD被引
6
次
|
|
|
|
10.
Ivanov M A. Global geological map of Venus.
Planetary and Space Science,2011,59(13):1559-1600
|
CSCD被引
5
次
|
|
|
|
11.
Helbert J. Surface brightness seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region,Venus.
Geophysical Research Letters,2008,35(11):L11201
|
CSCD被引
1
次
|
|
|
|
12.
Smrekar S E. Constraints on mantle plumes on Venus: Implications for volatile history.
Icarus,2012,217(2):510-523
|
CSCD被引
5
次
|
|
|
|
13.
Huang Jinshui. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics.
Earth and Planetary Science Letters,2013,362:207-214
|
CSCD被引
6
次
|
|
|
|
14.
Yang An. Numerical studies of the effects of phase transitions on Venusian mantle convection.
Science China:Earth Sciences,2015,58(10):1883-1894
|
CSCD被引
2
次
|
|
|
|
15.
Armann M. Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models.
Journal of Geophysical Research-Planets,2012,117:E12003
|
CSCD被引
4
次
|
|
|
|
16.
Rolf T. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus.
Icarus,2018,313:107-123
|
CSCD被引
3
次
|
|
|
|
17.
King S D. Venus resurfacing constrained by geoid and topography.
Journal of Geophysical Research-Planets,2018,123(5):1041-1060
|
CSCD被引
1
次
|
|
|
|
18.
Rappaport N J. An improved 360 degree and order model of Venus topography.
Icarus,1999,139(1):19-31
|
CSCD被引
4
次
|
|
|
|
19.
Steinberger B. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth,Venus and Mars.
Icarus,2010,207(2):564-577
|
CSCD被引
5
次
|
|
|
|
20.
Pauer M. Modeling the dynamic component of the geoid and topography of Venus.
Journal of Geophysical Research E,2006,111:E11012
|
CSCD被引
3
次
|
|
|
|
|