珠江口表层水体颗粒物中古菌四醚类脂物的分布特征
Distribution of archaeal lipids in surface water suspened particulate matter of Pearl River Estuary
查看参考文献44篇
文摘
|
类异戊二烯甘油二烷基甘油四醚类化合物(isoGDGTs)是古菌微生物的特征脂类标志物,由这组化合物构造出的TEX_(86)温标在海水古温度重建中得到了广泛应用。本文调查了珠江口及近岸海域(水深小于30m)4个季节水体悬浮颗粒物(SPM)的isoGDGTs分布情况。结果显示:虎门上游河流水体中的isoGDGTs主要来自原地生产的甲烷古菌输入,进入河口水体后,主要来自原地奇古菌和广古菌的输入。陆源古菌的输入在5月份和8月份,对河流水体产生一定的影响,但对河口水体的影响相对较小。珠江口水体isoGDGTs中的GDGT-2与GDGT-3比值(GDGT-[2]/[3])和GDGT-Cren'的丰度百分比(Cren'%)分别小于4和4%,与南海深水沉积物明显不同,表明珠江口与南海深水沉积物中isoGDGTs的古菌来源存在差异,这也可能是引起珠江口水体TEX_(86)温度(基于全球标定公式)偏离水体实际温度的原因。珠江口表层水体isoGDGTs中的GDGT-2和GDGT-3的丰度百分比与南海表层水体存在差异,这可能与GroupⅠ奇古菌和GroupⅡ广古菌相对比例空间变化有关。珠江口表层水体isoGDGTs的TEX_(86)温度在2月份明显高于原地表层水体温,而其他月份都低于原地表层水体温度,可能与GroupⅠ奇古菌和GroupⅡ广古菌相对比例的季节变化有关。几个月份中11月份isoGDGTs绝对含量最高,8月份较低,表明11月份和8月份分别是原地古菌生产量较大和较小时期。统计分析的结果显示,水体铵根离子含量、水体温度,以及溶解氧水平可能是控制珠江口水体isoGDGTs分布的主要环境因素。 |
其他语种文摘
|
Isoprenoid glycerol dialkyl glycerol tetraethers(isoGDGTs)are biomarkers of archaea.TEX_(86)is a sea surface temperature(SST)proxy based on the distribution of cyclic moieties of isoGDGTs and has been widely applied to reconstruct paleo-SST in numerous cases.In this study,the distributions of isoGDGTs from surface water suspened particulate matter(SPM)during the four seasons in Pearl River Estuary(PRE,water depth below 30m) and it's coastal waters are reported.The results showed that the major sources of isoGDGTs are in situ Methanogen in freshwater,while in estuarine brackish water,the sources of isoGDGTs are in situ Thaumarchaeota and Euryarchaeota. The input of terrigenous isoGDGTs exerted an influence on freshwater in May and August,which was inconspicuous in the estuary.The ratio of GDGT-2to GDGT-3(GDGT-[2]/[3])and fractional abundance of GDGT-Cren'(Cren'%)were less than 4and 4%,respectively,which are clearly different from those in surface sediments of deep basin of South China Sea(SCS).This indicates that archaeal sources of isoGDGTs in the PRE are different from those in surface sediments of SCS,which may result in the deviation of TEX_(86)-based temperatures from actual water temperatures in PRE.The variation in fractional abundance of GDGT-2and GDGT-3in surface water SPM of PRE and SCS may relate to the spatial changes in relative proportion in GroupⅠThaumarchaeota and GroupⅡEuryarchaeota.The TEX_(86)-based temperatures of isoGDGTs were higher than actual surface water temperatures in February,whereas they were lower than actual surface water temperatures in other months in the PRE.This may be attributed to the seasonal variation of relative proportion in GroupⅠThaumarchaeota and GroupⅡEuryarchaeota.The isoGDGTs from surface water SPM of the PRE were most and least abundant in November and August,respectively,suggesting high and lowin situaquatic Archaeal production in the two months, respectively.Statistical analysis showed that water temperature,NH_4~+ and dissolved oxygen(DO)concentration in water column are the most important factors affecting the distribution of isoGDGTs in PRE. |
来源
|
海洋学报
,2017,39(8):1-15 【核心库】
|
DOI
|
10.3969/j.issn.0253-4193.2017.08.001
|
关键词
|
珠江口
;
isoGDGTs
;
TEX_(86)
;
悬浮颗粒物
;
季节变化
|
地址
|
1.
东华理工大学, 江西省大气污染成因与控制重点实验室;;中国科学院边缘海地质重点实验室, 江西, 南昌, 330013
2.
中国科学院广州地球化学研究所, 中国科学院边缘海地质重点实验室, 广东, 广州, 510640
3.
中国科学院广州地球化学研究所, 中国科学院边缘海地质重点实验室;;海洋地质国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-4193 |
学科
|
海洋学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6088112
|
参考文献 共
44
共3页
|
1.
Damste J S S. Distribution of membrane lipids of Planktonic Crenarchaeotain the Arabian Sea.
Applied and Environmental Microbiology,2002,68(6):2997-3002
|
CSCD被引
17
次
|
|
|
|
2.
Damste J S S. Fluxes and distribution of tetraether lipids in an equatorial African lake:Constraints on the application of the TEX86palaeothermometer and BIT index in lacustrine settings.
Geochimica et Cosmochimica Acta,2009,73(14):4232-4249
|
CSCD被引
25
次
|
|
|
|
3.
Leininger S. Archaea predominate among ammonia-oxidizing prokaryotes in soils.
Nature,2006,442(7104):806-809
|
CSCD被引
251
次
|
|
|
|
4.
Schouten S. Intact membrane lipids of "Candidatus Nitrosopumilus maritimus,"a cultivated representative of the cosmopolitan Mesophilic Group I crenarchaeota.
Applied and Environmental Microbiology,2008,74(8):2433-2440
|
CSCD被引
19
次
|
|
|
|
5.
Schouten S. Widespread occurrence of structurally diverse tetraether membrane lipids:Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles.
Proceedings of the National Academy of Sciences of the United States of America,2000,97(26):14421-14426
|
CSCD被引
29
次
|
|
|
|
6.
Schouten S. Distributional variations in marine crenarchaeotal membrane lipids:a new tool for reconstructing ancient sea water temperatures.
Earth and Planetary Science Letters,2002,204(1/2):265-274
|
CSCD被引
110
次
|
|
|
|
7.
Kim J H. Global sediment core-top calibration of the TEX86paleothermometer in the ocean.
Geochimica et Cosmochimica Acta,2008,72(4):1154-1173
|
CSCD被引
35
次
|
|
|
|
8.
Kim J H. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids:implications for past sea surface temperature reconstructions.
Geochimica et Cosmochimica Acta,2010,74(16):4639-4654
|
CSCD被引
34
次
|
|
|
|
9.
Jia Guodong. Archaeal tetraether lipids record subsurface water temperature in the South China Sea.
Organic Geochemistry,2012,50:68-77
|
CSCD被引
21
次
|
|
|
|
10.
Kim J H. Influence of deep-water derived isoprenoid tetraether lipids on the TEXH86 paleothermometer in the Mediterranean Sea.
Geochimica et Cosmochimica Acta,2015,150:125-141
|
CSCD被引
4
次
|
|
|
|
11.
Leider A. Core-top calibration of the lipid-based U3K7'and TEX86temperature proxies on the southern Italian shelf(SW Adriatic Sea,Gulf of Taranto).
Earth and Planetary Science Letters,2010,300(1/2):112-124
|
CSCD被引
4
次
|
|
|
|
12.
Zhang Jie. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea.
Organic Geochemistry,2013,58:115-120
|
CSCD被引
12
次
|
|
|
|
13.
Weijers J W H. Occurrence and distribution of tetraether membrane lipids in soils:implications for the use of the TEX86proxy and the BIT index.
Organic Geochemistry,2006,37(12):1680-1693
|
CSCD被引
57
次
|
|
|
|
14.
Zhu Chun. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin.
Organic Geochemistry,2011,42(4):376-386
|
CSCD被引
24
次
|
|
|
|
15.
Lincoln S A. Planktonic euryarchaeota are a significant source of archaeal tetraether lipids in the ocean.
Proceedings of the National Academy of Sciences of the United States of America,2014,111(27):9858-9863
|
CSCD被引
7
次
|
|
|
|
16.
Zhu Chun. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.
Environmental Microbiology,2016,18:4324-4336
|
CSCD被引
3
次
|
|
|
|
17.
Schouten S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids:a review.
Organic Geochemistry,2013,54:19-61
|
CSCD被引
89
次
|
|
|
|
18.
Wei Yuli. Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea and their implications for paleoclimate studies.
Applied and Environmental Microbiology,2011,77(21):7479-7489
|
CSCD被引
18
次
|
|
|
|
19.
Ge Huangmin. Distribution of tetraether lipids in surface sediments of the northern South China Sea:Implications for TEX_(86) proxies.
Geoscience Frontiers,2013,4(2):223-229
|
CSCD被引
12
次
|
|
|
|
20.
Zhou Haoda. Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China:indicators of sea surface temperature and effects of their sources.
Palaeogeography,Palaeoclimatology,Palaeoecology,2014,395:114-121
|
CSCD被引
18
次
|
|
|
|
|