步枪弹高速冲击下防弹头盔功能梯度泡沫内衬的防护性能
Protective Performance of Functionally Graded Foam Lining Subjected to High-speed Rifle Bullet Impact
查看参考文献22篇
文摘
|
为开发能够抵御步枪弹的新型防弹头盔,研究功能梯度泡沫内衬在防弹头盔中的防护作用,通过材料压缩试验获得30 kg/m~3、45 kg/m~3和60 kg/m~3 3种不同密度发泡聚丙烯泡沫的力学性能,开展枪弹高速冲击功能梯度泡沫内衬防护下的假人颅脑试验并进行仿真研究。利用人颅脑试验和数值模拟计算,分析均质泡沫、正负梯度、凹凸梯度组合防护下的颅脑生物力学响应,以及泡沫局部和整体的能量吸收。结果表明:分层泡沫的能量吸收主要集中在靠近头部的支撑层,占泡沫吸收总能量的62.33%;平均密度相同时,梯度结构相较均质结构防护效果更显著,且负梯度优于正梯度;凸梯度结构在降低整体质量的同时,较其他梯度结构至少增加19.57%的能量吸收。 |
其他语种文摘
|
The mechanical properties of 30 kg/m~3, 45 kg/m~3 and 60 kg/m~3 foamed polypropylene foams with different densities were obtained through material compression experiments, and the cranial response of a dummy under the protection of a functional gradient foam lining subjected to high velocity impact of gunshot was tested and simulated to analyze the cranial biomechanical response under the combination of homogeneous foam, positive and negative gradients, and concave and convex gradients. Based on this, a new type of bulletproof helmet capable of resisting rifle bullets was developed, and the protective effect of functionally graded foam lining in bulletproof helmet was studied. The local and overall energy absorption of the foam was analyzed. The results show that the energy absorption of the layered foam is mainly concentrated in the support layer near the head, accounting for 62.33% of the total energy absorption of the foam; the gradient structure has more significant protection effect than the homogeneous structure when the average density is the same, and the negative gradient is better than the positive gradient in protection; the convex gradient structure increases the energy absorption by at least 19.57% compared with other gradient structures while reducing the overall weight. |
来源
|
兵工学报
,2021,42(6):1275-1282 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2021.06.018
|
关键词
|
防弹头盔
;
枪弹
;
功能梯度泡沫
;
高速冲击
;
能量吸收
;
防护性能
|
地址
|
1.
湖南科技大学机电工程学院, 湖南, 湘潭, 411201
2.
军事科学院国防工程研究院工程防护研究所, 河南, 洛阳, 471023
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
;
军委科技委基础加强计划技术领域基金项目
;
湖南省教育厅重点项目
|
文献收藏号
|
CSCD:7022561
|
参考文献 共
22
共2页
|
1.
Tan L B. Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: experiments and finite element simulations.
International Journal of Impact Engineering,2012,50:99-112
|
CSCD被引
10
次
|
|
|
|
2.
蔡志华. 枪弹冲击防弹头盔致头部非贯穿性损伤的数值模拟研究.
兵工学报,2017,38(6):1097-1105
|
CSCD被引
10
次
|
|
|
|
3.
Salimi J M. A computational study of influence of helmet padding materials on the human brain under ballistic impacts.
Computer Methods in Biomechanics And Biomedical Engineering,2014,17(12):1368-1382
|
CSCD被引
4
次
|
|
|
|
4.
Li X G. Behind helmet blunt trauma induced by ballistic impact: a computational model.
International Journal of Impact Engineering,2016,91:56-67
|
CSCD被引
7
次
|
|
|
|
5.
Avalle M. Mechanical models of cellular solids: parameters identification from experimental tests.
International Journal of Impact Engineering,2007,34(1):3-27
|
CSCD被引
29
次
|
|
|
|
6.
Cronin D S. Low density polyethylene, expanded polystyrene and expanded polypropylene: strain rate and size effects on mechanical properties.
Polymer Testing,2016,53:40-50
|
CSCD被引
5
次
|
|
|
|
7.
Srivastava V. On the polymeric foams: mo-deling and properties.
Journal of Materials Science,2014,49(7):2681-2692
|
CSCD被引
5
次
|
|
|
|
8.
Srivastava V. Performance evaluation of Fu Chang and low density foam model for expanded polypropylene.
MIT International Journal of Mechanical Engineering,2014,4(1):49-53
|
CSCD被引
1
次
|
|
|
|
9.
Lee Y S. Dynamic mechanical characteristics of expanded polypropylene foams.
Journal of Cellular Plastics,2009,46(1):43-55
|
CSCD被引
1
次
|
|
|
|
10.
Maheo L. Impact on multi-layered polypropylene foams.
International Journal of Impact Engineering,2013,53:84-93
|
CSCD被引
4
次
|
|
|
|
11.
Koohbor B. Design optimization of continuously and discretely graded foam materials for efficient energy absorption.
Materials & Design,2016,102:151-161
|
CSCD被引
7
次
|
|
|
|
12.
Zhang X. Optimal design of functionally graded foam material under impact loading.
International Journal of Mechanical Sciences,2013,68:199-211
|
CSCD被引
6
次
|
|
|
|
13.
Zhou C C. Fabrication of functionally graded porous polymer via supercritical CO_2 foaming.
Composites Part B: Engineering,2011,42(2):318-325
|
CSCD被引
6
次
|
|
|
|
14.
Kulkarni S G. Ballistic helmets-their design, materials, and performance against traumatic brain injury.
Composite Structures,2013,101:313-331
|
CSCD被引
9
次
|
|
|
|
15.
Gilson L. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine.
International Journal of Impact Engineering,2020,136:103417
|
CSCD被引
10
次
|
|
|
|
16.
Miranda-Vicario A. Experimental study of the deformation of a ballistic helmet impacted with pistol ammunition.
Composite Structures,2018,203:233-241
|
CSCD被引
2
次
|
|
|
|
17.
Hallquist J O.
LS-DYNA keyword user's manual, version 971,2007
|
CSCD被引
2
次
|
|
|
|
18.
Qu K F. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball.
Composite Structures,2020,253:112785
|
CSCD被引
3
次
|
|
|
|
19.
Palta E. Finite element analysis of the advanced combat helmet under various ballistic impacts.
International Journal of Impact Engineering,2018,112:125-143
|
CSCD被引
4
次
|
|
|
|
20.
Cai Z H. Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure.
Computer Methods in Biomechanics and Biomedical Engineering,2019,22(2):169-179
|
CSCD被引
6
次
|
|
|
|
|