估算干旱区地下水依赖型植物蒸散发的White法评述
A review of the White method for the estimation of evapotranspiration from phreatophytes in arid areas
查看参考文献78篇
文摘
|
日尺度上的地下水位波动是干旱区地下水依赖型植物蒸散消耗地下水的直接证据与指示.White通过分析日尺度地下水位波动与植被蒸散之间的关系,提出了利用地下水位观测数据来计算植被蒸散速率的方法,简称White法.该方法由于计算简单,所需数据少,在干旱区河岸林蒸散定量方面得到了广泛的应用.本文通过系统回顾White法的提出、“四大假设条件”及其在实际应用中的不足,梳理了近年来对White法不断修订的总体思路,总结了各种形式White法的特点、使用条件以及存在的主要问题;在此基础上,提出了White法进一步改进的方向.当前,结合地表蒸散发的多尺度观测与模拟,White法不仅可以用来估算区域尺度地下水蒸散,而且能够为定量解析干旱区植物的水分利用来源提供验证与参考. |
其他语种文摘
|
Diurnal water table fluctuation is considered the evidence and indicator of groundwater evapotranspiration by phreatophytes in arid areas. Based on the relationship between plant evapotranspiration and diurnal water table fluctuation, White proposed an analytical solution for estimating evapotranspiration rates using groundwater level monitoring data, i.e., the White method. Due to its simplicity and limited data requirements, this method has been widely used to estimate plant evapotranspiration in riparian zones of arid areas. In this article, we first introduced the fundamentals and four assumptions of the White method, and uncertainties that are involved in its application. Then, we reviewed the recent developments in the method, and discussed the main characteristics, limitations, and shortcomings of each modification; on this basis, the principle of further improvement of the White method is proposed. At present, combined with multi- scale observation and simulation of land surface evapotranspiration, the White method can be used not only to estimate regional scale groundwater evapotranspiration, but also to provide a reference for investigating water sources for plant use in arid regions. |
来源
|
地理科学进展
,2018,37(9):1159-1170 【核心库】
|
DOI
|
10.18306/dlkxjz.2018.09.001
|
关键词
|
干旱区
;
地下水依赖型生态系统
;
蒸散发
;
水位波动法
;
给水度
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院陆地水循环及地表过程重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100049
3.
罗蒙诺索夫莫斯科国立大学水文地质系, 莫斯科, 119991
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1007-6301 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
;
国家自然科学基金委员会与俄罗斯基础研究基金会合作交流项目
|
文献收藏号
|
CSCD:6347095
|
参考文献 共
78
共4页
|
1.
井家林.
极端干旱区绿洲胡杨根系空间分布特征及其构型研究,2014
|
CSCD被引
7
次
|
|
|
|
2.
李洪波. 基于改进White方法的地下水蒸散发研究.
地质通报,2012,31(6):989-993
|
CSCD被引
4
次
|
|
|
|
3.
夏延国. 极端干旱区胡杨细根的垂直分布和季节动态.
北京林业大学学报,2015,37(7):37-44
|
CSCD被引
7
次
|
|
|
|
4.
徐贵青. 共生条件下三种荒漠灌木的根系分布特征及其对降水的响应.
生态学报,2009,29(1):130-137
|
CSCD被引
57
次
|
|
|
|
5.
许皓. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响.
植物生态学报,2010,34(4):375-386
|
CSCD被引
21
次
|
|
|
|
6.
Acharya S. Analytical expressions for drainable and fillable porosity of phreatic aquifers under vertical fluxes from evapotranspiration and recharge.
Water Resources Research,2012,48(11):W11526
|
CSCD被引
1
次
|
|
|
|
7.
Acharya S. Evapotranspiration estimation from diurnal water table fluctuations: Implementing drainable and fillable porosity in the White method.
Vadose Zone Journal,2014,13(9):121-150
|
CSCD被引
1
次
|
|
|
|
8.
Beamer J P. Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using landsat and flux tower measurements.
Journal of the American Water Resources Association,2013,49(3):518-533
|
CSCD被引
1
次
|
|
|
|
9.
Blaney H F.
Rainfall penetration and consumptive use of water in the Santa Ana River Valley and Coastal Plain. Bulletin, No.33,1930
|
CSCD被引
1
次
|
|
|
|
10.
Butler J J. A field investigation of phreatophyte-induced fluctuations in the water table.
Water Resources Research,2007,43(2):W02404
|
CSCD被引
10
次
|
|
|
|
11.
Carling G T. Mechanisms, timing, and rates of arid region mountain front recharge.
Journal of Hydrology,2012,428/429(4):15-31
|
CSCD被引
1
次
|
|
|
|
12.
Chen X H. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer.
Journal of Hydrology,2010,388(3/4):379-388
|
CSCD被引
15
次
|
|
|
|
13.
Chen Y N. Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China.
Hydrogeology Journal,2008,16(7):1371-1379
|
CSCD被引
17
次
|
|
|
|
14.
Cheng D H. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China.
Journal of Hydrology,2013,490(20):106-113
|
CSCD被引
12
次
|
|
|
|
15.
Cleverly J R. Riparian ecohydrology: Regulation of water flux from the ground to the atmosphere in the Middle Rio Grande, New Mexico.
Hydrological Processes,2006,20(15):3207-3225
|
CSCD被引
3
次
|
|
|
|
16.
Crosbie R S. A time series approach to inferring groundwater recharge using the water table fluctuation method.
Water Resources Research,2005,41(1):W01008
|
CSCD被引
7
次
|
|
|
|
17.
Cuthbert M O. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations.
Water Resources Research,2010,46(9):W09515
|
CSCD被引
1
次
|
|
|
|
18.
Dawson T E. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions.
Oecologia,1993,95(4):565-574
|
CSCD被引
69
次
|
|
|
|
19.
Dolan T J. Evapotranspiration of a Florida, U.S.A., freshwater wetland.
Journal of Hydrology,1984,74(3/4):355-371
|
CSCD被引
1
次
|
|
|
|
20.
Duke H. Capillary properties of soils-influence upon specific yield.
Transactions of the ASAE,1972,15(4):688-691
|
CSCD被引
4
次
|
|
|
|
|