Otsu准则下分割阈值的快速计算
Fast Computation of Threshold Based on Otsu Criterion
查看参考文献15篇
文摘
|
传统Otsu法在确定阈值时需要穷举计算图像中每个灰度值为阈值时的类间方差.文中利用Otsu阈值的性质,提出了一个新算法以快速计算Otsu阈值.新算法搜寻出与两类类内均值的平均值的整数部分相等的阈值,从中确定一个符合Otsu准则的阈值.传统Otsu法在对梯度图像中的小目标分割时分割性能不佳,文中提出了一个Otsu阈值的改进算法,该算法使用快速计算Otsu阈值的新算法递归求解分割阈值.实验结果表明,与传统Otsu算法相比,计算Otsu阈值的快速算法速度更快,而阈值的改进算法对梯度图像中的小目标分割效果更好。 |
其他语种文摘
|
The traditional Otsu algorithm has to exhaustively compute all between-class variances.Based on one characteristic of Otsu threshold,this paperwork proposes a new fast algorithm.The new algorithm finds out every threshold which is equal to the integer part of the average of the mean levels of two classes,and then selects one threshold which is in accord with Otsu criterion.The traditional Otsu algorithm cannot work well when it extracts small object from gradient image,so an improved thresholding algorithm is proposed.Based on the fast Otsu algorithm provided,the improved thresholding algorithm recursively computes threshold.Experimental results show that the fast Otsu algorithm is faster than the traditional Otsu algorithm. Experimental results also show that the improved thresholding algorithm is effective to segment small object of gradient image. |
来源
|
电子学报
,2013,41(2):267-272 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2013.02.010
|
关键词
|
图像分割
;
Otsu准则
;
阈值选取
;
快速算法
|
地址
|
苏州大学机电工程学院, 江苏, 苏州, 215021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家重大科技专项
;
国家863计划
;
苏州市科技支撑计划
|
文献收藏号
|
CSCD:4778447
|
参考文献 共
15
共1页
|
1.
Mehmet Sezgin. Survey over image thresholding techniques and quantitative performance evaluation.
Journal of Electronic Imaging,2004,13(1):146-165
|
CSCD被引
308
次
|
|
|
|
2.
Otsu N. A threshold selection method from gray-level histograms.
IEEE Transactions on System Man and Cybernetic,1979,9(1):62-66
|
CSCD被引
2344
次
|
|
|
|
3.
Sahoo P K. A survey of thresholding techniques.
Computer Vision,Graphics and Image Processing,1988,41:233-260
|
CSCD被引
155
次
|
|
|
|
4.
刘建庄. 灰度图像的二维Otsu自动阈值分割法.
自动化学报,1993,19(1):101-105
|
CSCD被引
33
次
|
|
|
|
5.
景晓军. 一种基于三维最大类间方差的图像分割算法.
电子学报,2003,31(9):1281-1285
|
CSCD被引
37
次
|
|
|
|
6.
汪海洋. 二维Otsu自适应阈值选取算法的快速实现.
自动化学报,2007,33(9):968-971
|
CSCD被引
69
次
|
|
|
|
7.
吴成茂. 二维Otsu阈值法的快速迭代算法.
模式识别与人工智能,2008,21(6):746-757
|
CSCD被引
15
次
|
|
|
|
8.
申铉京. 三维直方图重建和降维的Otsu阈值分割算法.
电子学报,2011,39(5):1108-1114
|
CSCD被引
20
次
|
|
|
|
9.
Reddi S S. An optimal multiple threshold scheme for image segmentation.
IEEE Transactions on System Man and Cybernetic,1984,14(4):661-665
|
CSCD被引
20
次
|
|
|
|
10.
Han Lee. Comments on "an optimal multiple threshold scheme for image segmentation".
IEEE Transactions on System Man and Cybernetic,1990,20(3):741-742
|
CSCD被引
1
次
|
|
|
|
11.
Huang Dengyuan. Optimal multi-level thresholding using a two stage Otsu optimization approach.
Pattern Recognition Letters,2009,30:275-284
|
CSCD被引
26
次
|
|
|
|
12.
许向阳. Otsu准则的阈值性质分析.
电子学报,2009,37(12):2716-2719
|
CSCD被引
47
次
|
|
|
|
13.
Li Zuoyong. Unsupervised range-constrained thresholding.
Pattern Recognition Letters,2011,32:392-402
|
CSCD被引
1
次
|
|
|
|
14.
Hu Qingmao. Supervised range-constrained thresholding.
IEEE Transactions on Image Processing,2006,15(1):228-240
|
CSCD被引
3
次
|
|
|
|
15.
Lee S U. A comparative performance study of several global thresholding techniques for segmentation.
Computer Vision,Graphics and Image Processing,1990,52(2):171-190
|
CSCD被引
54
次
|
|
|
|
|