基于HLNS方法对高超声速边界层中非模态扰动演化的研究
Study on the evolution of non-modal disturbances in hypersonic boundary layer based on HLNS approach
查看参考文献25篇
文摘
|
高超声速边界层转捩是航天飞行器设计中的基础难题,发生在线性失稳区上游的亚临界转捩是常规风洞实验中常见的现象.亚临界转捩一般是由非模态扰动的演化及二次失稳触发的,为了揭示局部突变对高超声速边界层亚临界转捩的影响机理,发展了基于谐波型线性化Navier-Stokes (HLNS)方程及其伴随系统的描述非模态扰动演化的求解框架.该框架的优点是不改变原始系统的椭圆型特性,因而可以处理非模态扰动(条带)在局部突变附近的快速畸变.针对马赫数为5.96、攻角为-4°的高超声速钝平板边界层,研究了不同深度凹槽对条带幅值的影响.数值结果表明凹槽对条带有促进作用,这与实验中发现的规律定性相符,且存在使促进作用最大的最优凹槽深度. |
其他语种文摘
|
Laminar-turbulent transition in hypersonic boundary layers is of fundamental importance in the design of aerospace vehicles. Subcritical transition, occurring upstream of the linear instability region, appears frequently in conventional wind-tunnel experiments. The subcritical transition is usually triggered by the evolution of non-modal disturbances and their subsequent secondary instability. In order to reveal the inherent mechanisms governing the impact of abrupt changes on hypersonic subcritical transition, a numerical framework describing the evolution of non-modal disturbances based on the har-monic linearized Navier-Stokes (HLNS) equation and its adjoint system is developed. The advantage of this framework is that the elliptic nature of the original system is retained, leading to the ability to deal with the rapid distortion of the non-modal disturbances (streaks) in the vicinity of the abrupt local changes. For a hypersonic blunt-plate boundary layer with an oncoming Mach number 5.96 and an angle of attack -4°, the impact of the cavities with different depths on streak amplitude is studied. Numerical solutions indicate that streaks are enhanced by the cavities, which agrees with the experimental observations in quantity. Moreover, the enhancement effect peaks at a particular cavity depth. |
来源
|
力学进展
,2022,52(1):180-195 【核心库】
|
DOI
|
10.6052/1000-0992-22-003
|
关键词
|
高超声速边界层
;
凹槽
;
最优扰动
;
亚临界转捩
|
地址
|
1.
天津大学机械工程学院, 天津, 300072
2.
中国空气动力研究与发展中心, 空气动力学国家重点实验室, 四川, 绵阳, 621000
3.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0992 |
学科
|
力学 |
基金
|
国家自然科学基金的资助
|
文献收藏号
|
CSCD:7187046
|
参考文献 共
25
共2页
|
1.
董明. 边界层转捩预测中的局部散射理论.
空气动力学学报,2020,38:286-298
|
CSCD被引
5
次
|
|
|
|
2.
李强. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究.
物理学报,2020,69:024703
|
CSCD被引
3
次
|
|
|
|
3.
李斯特. 局部散射理论在高超声速边界层转捩预测中应用的检验.
力学进展,2021,51:364-375
|
CSCD被引
2
次
|
|
|
|
4.
赵磊.
高超声速后掠钝板边界层横流定常涡失稳的研究.[博士论文],2017
|
CSCD被引
2
次
|
|
|
|
5.
Dong M. Effect of two-dimensional short rectangular indentations on hypersonic boundary-layer transition.
AIAA Journal,2021,59:7
|
CSCD被引
1
次
|
|
|
|
6.
Dong M. Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness.
Journal of Fluid Mechanics,2020,896:A23
|
CSCD被引
2
次
|
|
|
|
7.
Dong M. An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers.
Journal of Fluid Mechanics,2021,913:A22
|
CSCD被引
5
次
|
|
|
|
8.
Henningson D. Bypass transition and linear growth mechanisms.
Advances in Turbulence V. 1,1995:190-204
|
CSCD被引
1
次
|
|
|
|
9.
Leib S J. Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer.
Journal of Fluid Mechanics,1999,380:169-203
|
CSCD被引
6
次
|
|
|
|
10.
Liu Y H. Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness.
Journal of Fluid Mechanics,2020,888:A10
|
CSCD被引
2
次
|
|
|
|
11.
Luchini P. Reynolds-number-independent instability of the boundary layer over a flat surface optimal perturbations.
Journal of Fluid Mechanics,2000,404:289-309
|
CSCD被引
8
次
|
|
|
|
12.
Paredes P. Optimal growth in hypersonic boundary layers.
AIAA Journal,2016,54:3050-3061
|
CSCD被引
2
次
|
|
|
|
13.
Paredes P. Blunt-body paradox and transient growth on a hypersonic spherical forebody.
Physical Review Fluids,2017,2:053903
|
CSCD被引
2
次
|
|
|
|
14.
Paredes P. Nose-tip bluntness effects on transition at hypersonic speeds.
Journal of Spacecraft and Rockets,2018,56:1-19
|
CSCD被引
1
次
|
|
|
|
15.
Ricco P. Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances.
Journal of Fluid Mechanics,2011,677:1-38
|
CSCD被引
4
次
|
|
|
|
16.
Song R. Improvement of the parabolized stability equation to predict the linear evolution of disturbances in three-dimensional boundary layers based on ray tracing theory.
Physical Review Fluids,2020,5
|
CSCD被引
1
次
|
|
|
|
17.
Tempelmann D. Spatial optimal growth in three-dimensional boundary layers.
Journal of Fluid Mechanics,2010,646:5-37
|
CSCD被引
1
次
|
|
|
|
18.
Tempelmann D. Spatial optimal growth in three-dimensional compressible boundary layers.
Journal of Fluid Mechanics,2012,704:251-279
|
CSCD被引
4
次
|
|
|
|
19.
Trefethen L N. Hydrodynamic stability without eigenvalues.
Science,1993,261:578-584
|
CSCD被引
17
次
|
|
|
|
20.
Tumin A. Spatial theory of optimal disturbances in boundary layers.
Physics of Fluids,2001,13:2097-2104
|
CSCD被引
4
次
|
|
|
|
|