新型冠状病毒感染相关嗅觉障碍的流行现状、机制和康复
COVID-19-related Olfactory Dysfunction: Prevalence, Mechanism and Recovery
查看参考文献133篇
文摘
|
新型冠状病毒感染(coronavirus disease 2019,COVID-19),下简称"新冠",是由严重急性呼吸综合征冠状病毒2 (severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)引发的全球流行传染病。鉴于嗅觉障碍是其主要神经症状,明确相关流行现状、机制和康复对促进公共健康非常重要。文献报道的新冠相关嗅觉障碍的发生率存在差异,与评估工具、人群以及变异毒株3个因素有关。其中,不同毒株之间嗅觉障碍发生率的差异可能源于刺突糖蛋白和侵入方式的变异。在外周嗅觉系统,SARS-CoV-2主要引发嗅裂炎症、支持细胞死亡和宿主免疫反应,而关于SARS-CoV-2入侵中枢的途径和机制仍存争议。部分"长新冠"患者存在持续的嗅觉障碍,SARS-CoV-2诱发慢性炎症反应和对嗅上皮再生的破坏是其潜在的病理基础。根据嗅觉媒介假说,SARS-CoV-2可能借由嗅觉系统影响中枢功能并最终诱发神经退行性变。嗅觉训练、药物等方法可帮助新冠相关嗅觉障碍的康复。 |
其他语种文摘
|
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since olfactory dysfunction is the main neurological symptom of COVID-19, it is important to examine the prevalence, underlying mechanisms, and recovery trajectories of COVID-19-related olfactory dysfunction for the promotion of public health. Reported prevalence rates of COVID- 19-related olfactory dysfunction vary widely across studies due to differences in the assessment of olfactory function, demographic background, and the predominant SARS-CoV-2 strains around the time of data collection. Specifically, different SARS-CoV-2 strains differ in the stability of spike glycoproteins and the host-cell infection pathways and thus efficacy in infecting the olfactory epithelium. In general, SARS-CoV-2 has been shown to cause inflammatory obstruction of the olfactory cleft, death of supporting cells, and host immune responses in the olfactory epithelium. Whether and how it invades into the central olfactory system remain controversial. Some individuals with "long COVID" suffer from chronic olfactory loss. The pathological mechanisms likely involve persistent inflammation in the olfactory epithelium and disruption of its regeneration triggered by SARS-CoV-2 infection. Based on the olfactory vector hypothesis, SARS-CoV-2 may affect central nervous system function by way of the olfactory system and could potentially induce neurodegeneration in the long term. Available interventions for managing olfactory dysfunction from SARS-CoV-2 infection include olfactory training and pharmacotherapy. |
来源
|
生物化学与生物物理进展
,2023,50(6):1245-1260 【核心库】
|
DOI
|
10.16476/j.pibb.2023.0055
|
关键词
|
新型冠状病毒感染
;
嗅觉障碍
;
严重急性呼吸综合征冠状病毒2
;
毒株差异
;
长新冠
;
嗅觉训练
|
地址
|
1.
中国科学院心理研究所, 脑与认知科学国家重点实验室, 北京, 100101
2.
中国科学院大学心理学系, 北京, 100049
3.
北京脑科学与类脑研究中心, 北京, 102206
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3282 |
学科
|
生物化学;基础医学;神经病学与精神病学 |
基金
|
中国科学院青年交叉团队
;
中国科学院心理研究所应急攻关项目
|
文献收藏号
|
CSCD:7485775
|
参考文献 共
133
共7页
|
1.
Moran D T. The fine structure of the olfactory mucosa in man.
J Neurocytol,1982,11(5):721-746
|
CSCD被引
10
次
|
|
|
|
2.
Gizurarson S. Anatomical and histological factors affecting intranasal drug and vaccine delivery.
Curr Drug Deliv,2012,9(6):566-582
|
CSCD被引
5
次
|
|
|
|
3.
Bryche B. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system.
Cell Tissue Res,2021,384(3):589-605
|
CSCD被引
1
次
|
|
|
|
4.
Chen C R. Anatomy and cellular constituents of the human olfactory mucosa: a review.
J Neurol Surg B Skull Base,2014,75(5):293-300
|
CSCD被引
1
次
|
|
|
|
5.
Hudson R. Odor and odorant: a terminological clarification.
Chem Senses,2000,25(6):693
|
CSCD被引
1
次
|
|
|
|
6.
Saladin K.
Anatomy & Physiology: the Unity of Form and Function. 6th ed,2012
|
CSCD被引
1
次
|
|
|
|
7.
Hanchate N K. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis.
Science,2015,350(6265):1251-1255
|
CSCD被引
5
次
|
|
|
|
8.
Mainland J D. The missense of smell: functional variability in the human odorant receptor repertoire.
Nat Neurosci,2014,17(1):114-120
|
CSCD被引
3
次
|
|
|
|
9.
Verbeurgt C. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.
PLoS One,2014,9(5):e96333
|
CSCD被引
3
次
|
|
|
|
10.
Buck L. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition.
Cell,1991,65(1):175-187
|
CSCD被引
108
次
|
|
|
|
11.
Xu L. Widespread receptor-driven modulation in peripheral olfactory coding.
Science,2020,368(6487):eaaz5390
|
CSCD被引
2
次
|
|
|
|
12.
Bushdid C. Humans can discriminate more than 1 trillion olfactory stimuli.
Science,2014,343(6177):1370-1372
|
CSCD被引
21
次
|
|
|
|
13.
Pevsner J. Odorant-binding protein and its mRNA are localized to lateral nasal gland implying a carrier function.
Proc Natl Acad Sci USA,1988,85(7):2383-2387
|
CSCD被引
1
次
|
|
|
|
14.
Jenkins P M. Olfactory cilia: linking sensory cilia function and human disease.
Chem Senses,2009,34(5):451-464
|
CSCD被引
2
次
|
|
|
|
15.
Glezer I. Olfactory receptor function.
Handb Clin Neurol,2019,164(5):67-78
|
CSCD被引
4
次
|
|
|
|
16.
Gerard J T.
Principles of Anatomy & Physiology,2017
|
CSCD被引
1
次
|
|
|
|
17.
Cevik M. Virology, transmission, and pathogenesis of SARS-CoV-2.
BMJ,2020,371:m3862
|
CSCD被引
9
次
|
|
|
|
18.
Whitcroft K L. Olfactory dysfunction in COVID-19: diagnosis and management.
JAMA,2020,323(24):2512-2514
|
CSCD被引
6
次
|
|
|
|
19.
Otte M S. Persisting olfactory dysfunction in patients after recovering from COVID-19.
J Infect,2020,81(3):e58
|
CSCD被引
1
次
|
|
|
|
20.
Han P. Magnetic resonance imaging of human olfactory dysfunction.
Brain Topogr,2019,32(6):987-997
|
CSCD被引
4
次
|
|
|
|
|