走廊南山河流纵剖面高海拔裂点的成因
The cause of high-altitude knickpoints on river longitudinal profiles along the Zoulang Nan Shan
查看参考文献50篇
文摘
|
河流水力侵蚀物理模型表明基岩河道纵剖面在均衡状态时表现为平滑上凹的形态,其特征反映了构造、基岩抗侵蚀能力和气候的作用;然而自然界河道纵剖面多呈现以裂点为特征的不均衡形态,不均衡的剖面形态以及裂点的研究同样可以对外力作用的变化起到很好的指示作用。位于北祁连的走廊南山高海拔河道纵剖面普遍呈现不均衡形式且发育海拔较高的裂点。通过对裂点成因分析发现,这些裂点并不主要受控于岩性、气候、构造等因素,而反映了冰川作用遗留地形与河流地形的分界。这一结果说明在对河道纵剖面高海拔裂点进行分析时要考虑到古冰川遗留地形也会对现代河道纵剖面产生重要影响,为进一步认识和理解造山带地貌演化以及控制因素提供了思路。 |
其他语种文摘
|
The stream-power incision model shows that a bedrock channel longitudinal profile is characterized by a smooth, concave-up shape at the steady state, and its characteristics reflect the influences from external forces, such as tectonics, climate, and rock resistance. However, most of the natural rivers present a transient state characterized by knickpoints on longitudinal profiles, which can also infer the influences from external forces. Widespread knickpoints at high altitudes on river longitudinal profiles along the Zoulang Nan Shan (mountain), which is a part of northern Qilian Mountains, provide a particular case for studies on the factor affecting the disequilibrium profile. The analysis of the knickpoints indicates that the formation of the knickpoint at high altitudes is not influenced by lithology, climate and/or tectonics. By comparing the plaeo-glaicial evidences, we proposed that the high-altitude knickpoint reflects the boundary between residual glacier valleys and fluvial channels. The result suggests that we should pay more attention to the inheritance landform by ancient glaciation when analyzing the knickpoint located at high altitudes. This study would greatly increase the knowledge about the geomorphic evolution on high mountain ranges along orogenic belts. |
来源
|
地理学报
,2018,73(9):1702-1713 【核心库】
|
DOI
|
10.11821/dlxb201809007
|
关键词
|
河道纵剖面
;
陡峭指数
;
裂点
;
走廊南山
;
冰川作用
|
地址
|
兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 730000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
地球物理学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6322270
|
参考文献 共
50
共3页
|
1.
Howard A D. Channel changes in badlands.
Geological Society of America Bulletin,1983,94:739-752
|
CSCD被引
55
次
|
|
|
|
2.
Howard A D. Modeling fluvial erosion on regional to continental scales.
Journal of Geophysical Research,1994,99:13971-13986
|
CSCD被引
28
次
|
|
|
|
3.
Hack J T. Stream profile analysis and stream-gradient index.
Geological Survey Professional Paper,1973,1:421-429
|
CSCD被引
1
次
|
|
|
|
4.
Flint J J. Stream gradient as a function of order, magnitude, and discharge.
Water Resources Research,1974,10:969-973
|
CSCD被引
44
次
|
|
|
|
5.
Whipple K X. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs.
Journal of Geophysical Research,1999,104:17661-17674
|
CSCD被引
98
次
|
|
|
|
6.
Duvall A R. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California.
Journal of Geophysical Research,2004,109:F03002
|
CSCD被引
32
次
|
|
|
|
7.
DiBiase R A. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA.
Earth and Planetary Science Letters,2010,289(1/2):134-144
|
CSCD被引
16
次
|
|
|
|
8.
Whipple K X. Bedrock rivers and the geomorphology of active orogens.
Annual Review of Earth and Planetary Sciences,2004,32(1):151-185
|
CSCD被引
78
次
|
|
|
|
9.
Kirby E. Expression of active tectonics in erosional landscapes.
Journal of Structural Geology,2012,44:54-75
|
CSCD被引
78
次
|
|
|
|
10.
Snyder N P. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California.
Geological Society of America Bulletin,2000,112:1250-1263
|
CSCD被引
62
次
|
|
|
|
11.
Kirby E. Quantifying differential rock-uplift rates via stream profile analysis.
Geology,2001,29:415-418
|
CSCD被引
87
次
|
|
|
|
12.
Snyder N P. Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem.
Journal of Geophysical Research,2003,108
|
CSCD被引
6
次
|
|
|
|
13.
Wang Yizhou. How a stationary knickpoint is sustained: New insights into the formation of the deep Yarlung Tsangpo Gorge.
Geomorphology,2017,285:28-43
|
CSCD被引
11
次
|
|
|
|
14.
Cyr A J. Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index.
Geomorphology,2014,209:27-38
|
CSCD被引
8
次
|
|
|
|
15.
Whittaker A C. How do landscapes record tectonics and climate?.
Lithosphere,2012,4(2):160-164
|
CSCD被引
19
次
|
|
|
|
16.
张会平. 循化-贵德地区黄河水系河流纵剖面形态特征及其构造意义.
第四纪研究,2008,28(2):299-309
|
CSCD被引
51
次
|
|
|
|
17.
Wallace R E. Degradation of the Hebgen Lake fault scaps of 1959.
Geology,1980,8:225-229
|
CSCD被引
4
次
|
|
|
|
18.
MacGregor K R. Numerical simulations of glacial-valley longitudinal profile evolution.
Geology,2000,28(11):1031-1034
|
CSCD被引
7
次
|
|
|
|
19.
Anderson R S. Features of glacial valley profiles simply explained.
Journal of Geophysical Research,2006,111:F01004
|
CSCD被引
2
次
|
|
|
|
20.
Brocklehurst S H. Response of glacial landscapes to spatial variations in rock uplift rate.
Journal of Geophysical Research,2007,112:F02035
|
CSCD被引
1
次
|
|
|
|
|