介电损耗型微波吸收材料的研究进展
Progress in dielectric loss microwave absorbing materials
查看参考文献102篇
文摘
|
随着无线信息技术的飞速发展,电磁干扰问题日益突出,在全球范围内引起广泛关注。解决这一挑战的关键是开发能够吸收电磁波的材料。理想的吸波材料应为集承载、防热和强吸收于一体的结构性材料。本文总结了近年来碳基、陶瓷基复合材料及其电磁波吸收性能,这些吸收剂的最终目的是在较薄的涂层上实现更宽的有效吸收频率带宽;介绍了几种典型的、广受欢迎的复合材料的制备方法、结构及其电磁波损耗机制;阐述了现今吸波材料的优势、研究现状及存在的问题。最后,预测了吸波材料未来潜在的发展方向,采用理论、模拟计算以及实际实验紧密结合的手段设计和构筑碳基复合材料将会是必然趋势。 |
其他语种文摘
|
Electromagnetic interference problems have become an increasing issue with the rapid development of wireless information technologies,which has attracted global attention.The key solution to this challenge is to develop materials that can absorb electromagnetic waves.The ideal absorbing material should be a structural material integrating load bearing,heat protection and strong absorption.The carbon-based,ceramic-based composites and their electromagnetic absorption properties in recent years were summarized in this review.The ultimate goal of these absorbers is to achieve broader effective absorption frequency bandwidth at a thin coating thickness.The synthesis methods,structures and electromagnetic wave loss mechanism of several typical and well-received composites were introduced.The superiorities,research status and main problems of absorbing materials were described.Based on these progresses,the potential development direction of absorbing materials in the future was predicted. |
来源
|
材料工程
,2021,49(6):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2020.000275
|
关键词
|
碳基复合材料
;
陶瓷基复合材料
;
电磁波吸收特性
;
电磁波损耗机制
|
地址
|
1.
哈尔滨工业大学材料科学与工程学院, 哈尔滨, 150001
2.
哈尔滨工业大学(威海)材料科学与工程学院, 山东, 威海, 264209
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:6997240
|
参考文献 共
102
共6页
|
1.
Wang Y. Synthesis of hierarchical CuS/RGO/PANI/Fe_3O_4quaternary composite and enhanced microwave absorption performance.
Journal of Alloys and Compounds,2018,757:372-381
|
CSCD被引
6
次
|
|
|
|
2.
Lv H L. Interface strategy to achieve tunable high frequency attenuation.
ACS Appl Mater Interfaces,2016,8(10):6529-6538
|
CSCD被引
5
次
|
|
|
|
3.
Wu G L. Synthesis and characterization of g-Fe_2O_3@C nanorod-carbon sphere composite and its application as microwave absorbing material.
Journal of Alloys and Compounds,2015,652:346-350
|
CSCD被引
7
次
|
|
|
|
4.
Han S J. Synthesis of PPy/Ni/RGO and enhancement on its electromagnetic wave absorption performance.
Ceramics International,2018,44(9):10352-10361
|
CSCD被引
4
次
|
|
|
|
5.
Qu B. Coupling hollow Fe_3O_4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material.
ACS Appl Mater Interfaces,2016,8(6):3730-3735
|
CSCD被引
36
次
|
|
|
|
6.
Xia L. Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithiumaluminume-silicate(LAS)composites.
Journal of Alloys and Compounds,2018,748:154-162
|
CSCD被引
5
次
|
|
|
|
7.
Chen Z P. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding.
Adv Mater,2013,25:1296-1300
|
CSCD被引
57
次
|
|
|
|
8.
Cao M S. The effects of temperature and frequency on the dielectric properties,electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites.
Carbon,2010,48(3):788-796
|
CSCD被引
167
次
|
|
|
|
9.
Peng C H. High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite.
Ceramics International,2014,40(1):47-55
|
CSCD被引
4
次
|
|
|
|
10.
Qing Y. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating.
Physical B,2010,405(4):1181-1184
|
CSCD被引
1
次
|
|
|
|
11.
Zhao D. Microwave absorbing property and complex permittivity of nano SiC particles doped with nitrogen.
Journal of Alloys and Compounds,2010,490(1/2):190-194
|
CSCD被引
2
次
|
|
|
|
12.
Ding D H. Research status and prospect of high temperature radar absorbing materials.
Journal of Inorganic Materials,2014,29(5):161-169
|
CSCD被引
1
次
|
|
|
|
13.
Zhang M M. Heterogeneous ironnickel compound RGO composites with tunable microwave absorption frequency and ultralow filler loading.
ChemChemPhys,2020,22(1):8639-8646
|
CSCD被引
3
次
|
|
|
|
14.
Shen W. Facile synthesis of rGO/SmFe_5O_(12)/CoFe_2O_4ternary nanocomposites:composition control for superior broadband microwave absorption performance.
Applied Surface Science,2018,453:464-476
|
CSCD被引
3
次
|
|
|
|
15.
Ali K. Synthesis of CuFe_2O_4-ZnO nanocomposites with enhanced electromagnetic wave absorption properties.
J Alloys Compd,2017,705:559-565
|
CSCD被引
3
次
|
|
|
|
16.
Luo J. Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites.
Compos Sci Technol,2015,117:315-321
|
CSCD被引
3
次
|
|
|
|
17.
Fu M. Vapor diffusion synthesis of CoFe_2O_4hollow sphere/graphene composites as absorbing materials.
J Mater Chem A,2014,2:735-744
|
CSCD被引
19
次
|
|
|
|
18.
Liu P. Superparamagnetic NiFe_2O_4 particles on poly (3,4-ethylenedioxythiophene)-graphene: synthesis,characterization and their excellent microwave absorption properties.
Compos Sci Technol,2014,95:107-113
|
CSCD被引
3
次
|
|
|
|
19.
Liu C Y. Electromagnetic wave absorption of silicon carbide based materials.
RSC Advances,2017,7(2):595-605
|
CSCD被引
2
次
|
|
|
|
20.
He P. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding.
Carbon,2020,157(28):80-89
|
CSCD被引
21
次
|
|
|
|
|