微重力环境中热厚材料着火特性研究
Ignition of a Thermally-Thick Solid Fuel in Microgravity
查看参考文献14篇
文摘
|
在空间微重力环境中,对聚甲基丙烯酸甲酯(PMMA)试样进行点燃实验,研究了不同氧气浓度和环境压力条件下热厚材料的着火特性。结果表明,在研究涉及的实验条件下,材料均可被点燃。外加热源消失后,氧气浓度较高时,点火形成的材料表面火焰可以自维持并稳定传播,而氧气浓度较低时,火焰不能自维持并最终熄灭。材料着火具有爆发性,材料热解形成的可燃气瞬间被点燃形成火焰。重复点火时,材料可以被点燃,但外加热源消失后火焰不能维持传播,材料着火过程中散发出大量的发光颗粒并随气流迁移,存在引燃周围易燃物的风险。材料着火后形成的稳定火焰总是朝着与气流流动相反的方向运动,即火焰逆风传播,没有出现顺风传播的现象。 |
其他语种文摘
|
Ignition experiments of thermally-thick PMMA plates in microgravity have been performed aboard SJ-10 satellite of China,and the effects of oxygen concentration and ambient pressure on ignition processes were investigated. It is found that, all the fuels can be ignited under the present experimental conditions. A steady-spread and self-sustained flame is formed at high oxygen concentration, while at lower oxygen concentration the flame cannot be self-sustained and will extinguish ultimately. The flame is formed instantaneously when the pyrolysis gas is ignited, showing an explosive characteristic at the moment of ignition. When the igniter is energized repeatedly, PMMA plates can also be ignited in all of the tests. However, after the igniter is powered off, the flame cannot be self-sustained. A large amount of luminous particles are released and migrated with gas flow during the process of flame formation, which indicates the risk of igniting surrounding combustible materials. After the material is ignited, the flame spreads opposing the gas flow, i.e., only opposed-spread flame is formed. |
来源
|
工程热物理学报
,2018,39(1):213-217 【核心库】
|
关键词
|
热厚材料
;
着火
;
火焰传播
;
微重力
;
实践十号卫星
|
地址
|
1.
中国科学院力学研究所, 中国科学院微重力重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
中国航天员科研训练中心, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-231X |
学科
|
能源与动力工程 |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6153715
|
参考文献 共
14
共1页
|
1.
Kashiwagi T. A Radiative Ignition Model of a Solid Fuel.
Combustion Science and Technology,1974,8:225-236
|
CSCD被引
6
次
|
|
|
|
2.
Amos B. Model of the Ignition and Flame Development on a Vaporizing Combustible Surface in a Stagnation Point Flow: Ignition by Vapor Fuel Radiation Absorption.
Combustion Science and Technology,1988,62:331-343
|
CSCD被引
1
次
|
|
|
|
3.
Nakamura Y. Effects of Gravity and Ambient Oxygen on a Gas-Phase Ignition Over a Heated Solid Fuel.
Combustion and Flame,2000,120:34-48
|
CSCD被引
4
次
|
|
|
|
4.
Fujita O. Experimental Study Radiative Ignition of a Paper Sheet in Microgravity.
Proceedings of the Combustion Institute,2000,28:2761-2767
|
CSCD被引
2
次
|
|
|
|
5.
Olson S L. Experimental Observations of Spot Radiative Ignition and Subsequent Three-Dimensional Flame Spread over Thin Cellulose Fuels.
Combustion and Flame,2001,125:852-864
|
CSCD被引
6
次
|
|
|
|
6.
Olson S L. Piloted Ignition Delay Times of Opposed and Concurrent Flame Spread over a Thermally-Thin Fuel in a Forced Convective Microgravity Environment.
Proceedings of the Combustion Institute,2011,33:2633-2639
|
CSCD被引
1
次
|
|
|
|
7.
Olson S L. An Earth-based Low Stretch Apparatus for Material Flammability Assessment in Microgravity and Extraterrestrial Environments.
Proceedings of the Combustion Institute,2005,30:2335-2343
|
CSCD被引
2
次
|
|
|
|
8.
West J. Quiescent Flame Spread over Thick Fuels in Microgravity.
Proceedings of the Combustion Institute,1996,26(1):1335-1343
|
CSCD被引
1
次
|
|
|
|
9.
Altenkirch R A. Inherently Unsteady Flame Spread to Extinction Over Thick Fuels in Microgravity.
Proceedings of the Combustion Institute,1998,27(2):2515-2524
|
CSCD被引
1
次
|
|
|
|
10.
Vietoris T. Laminar Diffusion Flame in Microgravity: The Results of the Minitexus 6 Sounding Rocket Experiment.
Proceedings of the Combustion Institute,2000,28:2883-2889
|
CSCD被引
1
次
|
|
|
|
11.
Olson S L. Sounding Rocket Microgravity Experiments Elucidating Diffusive and Radiative Transport Effects on Flame Spread Over Thermally Thick Solids.
Combustion Science and Technology,2004,176(4):557-584
|
CSCD被引
3
次
|
|
|
|
12.
Hu Wenrui. Space Program SJ-10 Microgravity Research.
Microgravity Science and Technology,2014,26:159-169
|
CSCD被引
13
次
|
|
|
|
13.
王双峰. 非金属固体材料在微重力环境中的着火及燃烧特性研究.
力学与实践,2016,38(2):217-220
|
CSCD被引
2
次
|
|
|
|
14.
尹永利. SJ-10卫星固体材料燃烧实验装置.
空间科学学报,2016,36(4):492-496
|
CSCD被引
1
次
|
|
|
|
|