广西茶山锑矿尾砂中微量元素的淋滤实验研究
Leaching Experiments on the Release of Trace Elements from Tailings of Chashan Antimony Mine,Guangxi,China
查看参考文献31篇
文摘
|
采用干湿交替和完全浸没的方法,运用柱淋滤实验研究了广西南丹地区茶山锑矿选矿尾砂中微量元素的淋滤行为,淋滤液采用了模拟酸雨(pH 4.0~4.4)和河水(pH 8.0).结果表明,尾矿砂具有一定的酸中和能力,即使用pH 4.0~4.4的酸性溶液淋滤,产生的淋滤液也是偏碱性的,pH基本在7.2~8.0之间.与As和Pb相比,Sb更容易从尾矿砂中淋滤出来;干湿交替条件下Sb的淋出明显高于完全浸没条件,As更容易在完全浸没条件下淋出,且浸没间隔时间越长淋出浓度越高,间隔时间为5 d和10 d时As的淋出浓度比1 d和2 d时高出1~2倍;Mn和Zn具有相似的特点,它们受pH的影响较大,在模拟酸雨淋滤的淋出浓度明显高于河水淋滤,而干湿交替条件和完全浸没条件以及间隔时间对它们的淋出影响较小;Sr的淋出率较高,基本没有受到本实验中淋滤液和干湿交替条件以及完全浸没条件的影响;Pb基本没有淋出;尾矿砂内部的碱性环境和干湿交替条件是控制重金属锑淋滤的主要机制. |
其他语种文摘
|
The leaching of trace elements from tailings of an antimony mine in Guangxi Autonomous Region,China,was investigated through column leaching under wet-dry cycling and complete immersion conditions.Simulated acid rain(pH 4.0-4.4) and river water(pH 8.0) were used as the leaching solution.No matter the simulated acid rain or river water was used,the leachate always showed a slightly alkaline pH between 7.2 and 8.0,suggesting an acid neutralization capacity of the tailing.Compared to As and Pb,Sb was leached out to a much higher extent in this circumstance.Furthermore,Sb release was largely enhanced in wet-dry cycle compared to the complete immersion condition.In contrast,As was leached more readily in the complete immersion condition,and the longer the tailings were immersed in water,the higher the As concentration in the leachate.The leachate on day 5 and day 10 showed 1-2 times higher As concentration as compared with the leachate on day 1 and day 2.The leaching of Mn and Zn by simulated acid rain was much stronger than that by river water,and the release of Mn and Zn was more significantly affected by pH than by O2(i.e.the difference between the wet-dry cycle and complete immersion condition).Sr showed a high release rate that was not affected by leaching solution or air-exposure condition.Basically,Pb showed a very low leaching potential.In general,an alkaline circumstance combined with wet-dry cycle forms the favorable condition for the release of Sb in the tailings. |
来源
|
环境科学
,2012,33(8):2840-2848 【核心库】
|
关键词
|
广西茶山
;
尾矿砂
;
微量元素
;
锑
;
淋滤
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0250-3301 |
学科
|
环境污染及其防治 |
基金
|
国家自然科学基金项目
;
国家自然科学基金创新研究群体项目
;
中国科学院知识创新工程重要方向项目
|
文献收藏号
|
CSCD:4589543
|
参考文献 共
31
共2页
|
1.
Gnandi K. Heavy metal release from phosphorite tailings into seawater: a simulated laboratory study.
Science of the Total Environment,1999,236(1/3):181-190
|
CSCD被引
2
次
|
|
|
|
2.
Gaskova O L. Leaching experiments on trace element release from the arsenic-bearing tailings of Khovu-Aksy (Tuva Republic, Russia).
Applied Geochemistry,2003,18(9):1361-1371
|
CSCD被引
4
次
|
|
|
|
3.
Marianne L. Dispersion of tailings in the Knabena-Kvina drainage basin, Norway, 1: Evaluation of overbank sediments as sampling medium for regional geochemical mapping.
Journal of Geochemical Exploration,1997,58(2/3):157-172
|
CSCD被引
1
次
|
|
|
|
4.
周建民. 大宝山矿区污染水体中重金属的形态分布及迁移转化.
环境科学研究,2005,18(3):5-10
|
CSCD被引
55
次
|
|
|
|
5.
吴攀. 矿山环境中(重)金属的释放迁移地球化学及其环境效应.
矿物学报,2001,21(2):213-218
|
CSCD被引
45
次
|
|
|
|
6.
Jung M C. Arsenic, Sb and Bi contamination of soils. Plants, waters and sediments in the vicinity of the Dalsung Cu-W mine in Korea.
Science of the Total Environment,2002,295(1/3):81-89
|
CSCD被引
8
次
|
|
|
|
7.
Ranville M. Metal attenuation at the abandoned Spenceville copper mine.
Applied Geochemistry,2004,19(5):803-815
|
CSCD被引
5
次
|
|
|
|
8.
Gebel T. Comparative and environmental genotoxicity of antimony and arsenic.
Anticancer Research,1997,17(4A):2603-2608
|
CSCD被引
8
次
|
|
|
|
9.
吴丰昌. 锑的环境生物地球化学循环与效应研究展望.
地球科学进展,2008,23(4):350-356
|
CSCD被引
28
次
|
|
|
|
10.
Hinkley T K. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes.
Earth and Planetary Science Letters,1999,170(3):315-325
|
CSCD被引
3
次
|
|
|
|
11.
何孟常. 锑矿区土壤中锑的形态及生物有效性.
环境化学,2003,22(2):126-130
|
CSCD被引
24
次
|
|
|
|
12.
Baroni F. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area.
Environmental Pollution,2000,109(2):347-352
|
CSCD被引
25
次
|
|
|
|
13.
Qi C C. Environmental geochemistry of antimony in Chinese coals.
Science of the Total Environment,2008,389(2/3):225-234
|
CSCD被引
9
次
|
|
|
|
14.
Wilson N J. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand.
Environmental Pollution,2004,129(2):257-266
|
CSCD被引
15
次
|
|
|
|
15.
Akihiro I. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter.
Atmospheric Environment,2007,41(23):4908-4919
|
CSCD被引
10
次
|
|
|
|
16.
Ben D. Effect of antimony catalyst on solid state polycondensation of poly (ethylene terephthalate).
Polymer,2002,43(11):3147-3154
|
CSCD被引
3
次
|
|
|
|
17.
Tessier A. Sequential extraction procedure for the speciation of particulate trace metals.
Analytical Chemistry,1979,51(7):844-851
|
CSCD被引
1935
次
|
|
|
|
18.
韦江雄. 水泥硬化体中Cr的形态及分布----改进的Tessier连续浸提法.
硅酸盐学报,2010,38(7):1167-1172
|
CSCD被引
6
次
|
|
|
|
19.
王擎. 逐级化学提取(SCEE)技术及其在煤微量元素赋存状态研究中的应用.
化工技术与开发,2010,39(1):25-29
|
CSCD被引
4
次
|
|
|
|
20.
Vojtech E. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues.
Waste Management & Research,2010,28(7):587-595
|
CSCD被引
1
次
|
|
|
|
|