3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究
Properties of Ag-doped mesoporous bioactive glass coatings on 3D printed pure titanium bone scaffolds
查看参考文献36篇
文摘
|
术后感染是临床上常见且最具挑战性的问题之一,开发新型抗菌涂层是解决该问题的有效策略,具有重要的科学及社会意义。在3D打印多孔钛骨支架表面制备了具有抗菌功能的生物活性涂层,研究发现,银(Ag)以单质的形式存在于介孔生物玻璃(MBG)涂层之中,随着Ag含量的增加(0%,0.5%,1%, 1.5%,摩尔分数),介孔涂层的比表面积从377.6 m~2/g下降到363.35 m~2/g。体外矿化结果表明,随着Ag含量的增加,磷灰石诱导能力略微下降。抗菌实验表明,银的添加显著提高了支架的抗菌性能。添加少量的银(0.5%)即可达到100%的抗菌率。支架与MC3T3-E1细胞共培养的实验结果表明,Ag掺杂的MBG涂层具有良好细胞相容性,且添加少量银能促进MC3T3-E1细胞增殖。使用一种简单的浸渍提拉法将掺Ag的MBG涂层应用于具有复杂的多孔结构3D打印钛支架上,使得支架的矿化性能、杀菌性能以及细胞相容性显著提高。本研究为进一步开发多功能骨植入支架提供了新思路。 |
其他语种文摘
|
Infection after surgery is one of the common and most challenging clinical problems, and the development of new antibacterial coating is an effective strategy to solve this problem, which has important scientific and social significance. A bioactive coating with antibacterial function was prepared on the surface of a 3D printed porous titanium bone scaffold. It is discovered that silver (Ag) exists in the coating as a simple substance. As the Ag content increases (0%, 0.5%, 1 %, 1.5%, mole fraction), the specific surface area of the mesoporous coating is decreased from 377.6 m~2/g to 363.35 m~2/g. In vitro mineralization results show that with the increase of Ag content, the apatite inducing ability is decreased slightly. At the same time, the antibacterial test demonstrates that the addition of silver markedly enhances the antibacterial performance of the scaffolds. Adding a small amount of silver (0.5%) can achieve 100% antibacterial rate. The MC3T3-E1 cells are cultured with the scaffolds for 1,3 and 7 days, and it is found that the Ag-doped MBG coatings have good cytocompatibility,and the addition of a small amount of silver can promote the proliferation of MC3T3-E1 cells. A simple dipping and pulling method was used to apply the Ag-doped MBG coating to the complex 3D printed titanium scaffolds with complex topological structure. The mineralization performance,bactericidal performance and cellular compatibility of the scaffold are significantly improved, providing a new idea for the further development of multifunctional bone implant scaffold. |
来源
|
材料工程
,2022,50(11):34-45 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001215
|
关键词
|
介孔生物活性玻璃涂层
;
银
;
骨感染
;
3D打印
;
纯钛支架
|
地址
|
1.
暨南大学先进耐磨蚀及功能材料研究院, 广州, 510632
2.
暨南大学化学与材料学院, 广州, 510632
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
基础医学 |
基金
|
国家重点研发计划
;
广州市基础研究计划民生科技专题项目
;
中央高校基本科研业务费专项资金
;
广东省教育厅项目
|
文献收藏号
|
CSCD:7398757
|
参考文献 共
36
共2页
|
1.
任军帅. 生物医用钛合金材料发展现状及趋势.
材料导报,2016,30(增刊2):384-388
|
CSCD被引
13
次
|
|
|
|
2.
Wang X. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review.
Biomaterials,2016,83:127-141
|
CSCD被引
66
次
|
|
|
|
3.
Wang X. Porous TiNbZr alloy scaffolds for biomedical applications.
Acta Biomaterialia,2009,5:3616-3624
|
CSCD被引
6
次
|
|
|
|
4.
Yu G. The select of internal architecture for porous Ti alloy scaffold: a compromise between mechanical properties and permeability.
Materials & Design,2020,192:108754-108764
|
CSCD被引
5
次
|
|
|
|
5.
Yuan L. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review.
Bioactive Materials,2019,4:56-70
|
CSCD被引
31
次
|
|
|
|
6.
胡海波. 生物医用多孔钛及钛合金的研究进展.
材料导报,2012,26(增刊1):262-266
|
CSCD被引
16
次
|
|
|
|
7.
Engh C. Porous-coated hip replacement:the factors governing bone ingrowth, stress shielding, and clinical results.
The Journal of Bone and Joint Surgery,1987,69(1):45-55
|
CSCD被引
47
次
|
|
|
|
8.
Huiskes R. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.
Clinical Orthopedics and Related Research,1992,274:124-134
|
CSCD被引
53
次
|
|
|
|
9.
Hao Y L. Biomedical titanium alloys and their additive manufacturing.
Rare Metals,2016,35(9):661-671
|
CSCD被引
22
次
|
|
|
|
10.
张学军. 3D打印技术研究现状和关键技术.
材料工程,2016,44(2):122-128
|
CSCD被引
114
次
|
|
|
|
11.
Van Noort R. The future of dental devices is digital.
Dental Materials,2012,28(1):3-12
|
CSCD被引
27
次
|
|
|
|
12.
Murr L E. Microstructure and mechanical behavior of Ti-6Al-4 V produced by rapid-layer manufacturing, for biomedical applications.
Journal of the Mechanical Behavior of Biomedical Materials,2009,2(1):20-32
|
CSCD被引
55
次
|
|
|
|
13.
杨永强. 金属零件激光选区熔化技术的现状及进展.
激光与光电子学进展,2018,55(1):9-21
|
CSCD被引
32
次
|
|
|
|
14.
Li K. Graphene modified titanium alloy promote the adhesion, proliferation and osteogenic differentiation of bone marrow stromal cells.
Biochemical and Biophysical Research Communications,2017,489(2):187-192
|
CSCD被引
2
次
|
|
|
|
15.
Zhang W. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseo-integration.
Biomaterials,2013,34(13):3184-3195
|
CSCD被引
5
次
|
|
|
|
16.
Amin Y S. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.
Journal of the Mechanical Behavior of Biomedical Materials,2014,36:109-119
|
CSCD被引
1
次
|
|
|
|
17.
Lee H. Effect of HF/HNO_3-treatment on the porous structure and cell penetrability of titanium (Ti) scaffold.
Materials & Design,2018,145:65-73
|
CSCD被引
1
次
|
|
|
|
18.
Lin J G. Degradation of the strength of porous titanium after alkali and heat treatment.
Journal of Alloys and Compounds,2009,485(1):316-319
|
CSCD被引
8
次
|
|
|
|
19.
何喜. 生物医用多孔钛及钛合金表面改性的研究进展.
电镀与涂饰,2021,40(20):1535-1538
|
CSCD被引
1
次
|
|
|
|
20.
Kargozar S. Bioactive glasses: sprouting angiogenesis in tissue engineering.
Trends in Biotechnology,2018,36(4):430-444
|
CSCD被引
15
次
|
|
|
|
|