喀斯特地区不同岩土组构对岩溶碳通量的影响
Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions
查看参考文献27篇
文摘
|
我国南方喀斯特地区岩石裸露率高、土层浅薄且分布不均,这种特殊的岩土组构如何影响水文过程对于准确估算岩溶碳通量具有重要意义。水化学径流法是计算流域尺度岩溶碳通量的常用方法,其中流域面积和流量作为2个重要参数在喀斯特地区往往难以准确获取。在普定喀斯特生态系统观测研究站设计了一组岩土比(1 ∶1和4∶1)和一组土层厚度(5,20,100 cm)共计5种岩土组构的模拟试验场。通过一个完整水文年的流量和水化学监测,定量研究了岩石裸露率和土层厚度对水文过程以及岩溶碳通量的影响。研究结果表明,5个模拟试验场岩溶碳通量平均值为(17±3) gC/m~2/a,受渗漏量控制,雨季(5-10月)约占95%;岩石裸露率(2组岩土组构之间)对渗漏量的影响可达14%,且随着岩石裸露率增加,入渗系数也相应增加;土层厚度对渗漏量的影响仅在1% ~2%之间。此外,对8个野外流域观测数据的分析发现,入渗系数与岩溶碳通量的相关性最为显著,说明入渗系数是喀斯特地区不同岩土组构地质背景影响和控制岩溶碳通量的主要因素,同时这种影响可能随降雨量变化而变化,即入渗系数并非常数。 |
其他语种文摘
|
The karst areas in southern China are characterized by a high rock exposure ratio and shallow and unevenly distributed soil layers.How this special geotechnical fabric affects the hydrological process is of great significance for the accurate estimation of carbonate weathering carbon sink flux.Hydrochemical runoff is a commonly used method for calculating carbonate weathering carbon sink flux at the watershed scale,and basin area and discharge,as two important parameters,are often difficult to accurately obtain in karst areas.To overcome this problem,we designed a rock-soil fabric simulation test site,including different rock-soil ratios(1∶1 and 4∶1) and soil thicknesses(5,20,100 cm) at the Puding Karst Ecosystem Research Station,Chinese Academy Sciences.The effects of rock exposure and soil layer thickness on hydrological processes and carbonate weathering carbon sink flux were quantitatively studied by monitoring the flow and hydrochemistry during a hydrological year.The results show that the average carbonate weathering carbon sink flux is 17±3 gC/m~2/a,which is controlled by the leakage amount and accounts for 95% in the rainy season(from May to October); The influence of the rock exposure ratio(between the two groups of rock fabric) on the leakage amount is up to 14%,and the infiltration coefficient increases with increaseing of rock exposure ratio; The effect of the soil layer thickness on seepage is only 1%-2%.In addition, it is found that the correlation between the infiltration coefficient and carbonate weathering carbon sink flux is the most significant by analysis the observed data of 8 field basins from previous studies.The infiltration coefficient is the main factor affecting and controlling the carbonate weathering carbon sink flux, which is due to the geological background of different rock and soil fabrics in the karst area.At the same time,the influence may change with the rainfall variation,that is,the infiltration coefficient is not constant. |
来源
|
地质科技通报
,2022,41(3):208-214 【扩展库】
|
DOI
|
10.19509/j.cnki.dzkq.2022.0088
|
关键词
|
岩溶碳通量
;
岩石裸露率
;
岩土组构
;
土层厚度
;
入渗系数
;
喀期特普定喀斯特生态系统观测研究站
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550081
2.
中国科学院普定喀斯特生态系统观测研究站, 中国科学院普定喀斯特生态系统观测研究站, 贵州, 安顺, 562100
3.
中国科学院大学, 北京, 100049
4.
沈阳市生态环境事务服务中心, 沈阳, 110011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2096-8523 |
学科
|
地质学 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7229991
|
参考文献 共
27
共2页
|
1.
Amiotte S P. Modelling of atmospheric CO_2 consumption by chemical weathering of rocks:Application to the Garonne,Congo and Amazon basins.
Chemical Geology,1993,107(3/4):205-210
|
CSCD被引
39
次
|
|
|
|
2.
Shen T M. Role of bacterial carbonic anhydrase during CO_2 capture in the CO_2-H_2O-carbonate system.
Biochemical Engineering Journal,2017,123:66-74
|
CSCD被引
8
次
|
|
|
|
3.
Martin J B. Carbonate minerals in the global carbon cycle.
Chemical Geology,2017,449:58-72
|
CSCD被引
27
次
|
|
|
|
4.
Liu Z H. Atmospheric CO_2 sink:Silicate weathering or carbonate weathering?.
Applied Geochemistry,2011,26:S292-S294
|
CSCD被引
50
次
|
|
|
|
5.
Wang Z J. Flux and influencing factors of CO_2 outgassing in a karst spring-fed creek:Implications for carbonate weathering-related carbon sink assessment.
Journal of Hydrology,2020,596(2):125710
|
CSCD被引
3
次
|
|
|
|
6.
Liu Z H. A new direction in effective accounting for the atmospheric CO_2 budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms.
Earth Science Reviews,2010,99(3):162-172
|
CSCD被引
156
次
|
|
|
|
7.
Liu Z H. Large and active CO_2 uptake by coupled carbonate weathering.
Earth-Science Reviews,2018,182:42-49
|
CSCD被引
62
次
|
|
|
|
8.
Goldscheider N. Global distribution of carbonate rocks and karst water resources.
Hydrogeology Journal,2020,28(5):1661-1677
|
CSCD被引
35
次
|
|
|
|
9.
袁道先. 碳循环与全球岩溶.
第四纪研究,1993,13(1):1-6
|
CSCD被引
91
次
|
|
|
|
10.
罗明明. 峡口隧道间歇性岩溶涌突水过程及来源解析.
地质科技通报,2021,40(6):246-254
|
CSCD被引
18
次
|
|
|
|
11.
江欣悦. 豫北平原浅层地下水化学特征与成因机制.
地质科技通报,2021,40(5):290-300
|
CSCD被引
17
次
|
|
|
|
12.
Zeng Q R. Carbonate weathering-related carbon sink fluxes under different land uses:A case study from the Shawan Simulation Test Site,Puding,Southwest China.
Chemical Geology,2017,474:58-71
|
CSCD被引
20
次
|
|
|
|
13.
Godsey S E. Concentration-discharge relationships reflect chemostatic characteristics of US catchments.
Hydrological Processes,2009,23(13):1844-1864
|
CSCD被引
19
次
|
|
|
|
14.
Wang Q F. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010.
Science Bulletin,2015,60(6):577-590
|
CSCD被引
28
次
|
|
|
|
15.
王世杰. 中国南方喀斯特地区碳循环研究进展.
地球与环境,2017,45(1):2-9
|
CSCD被引
46
次
|
|
|
|
16.
Yan J H. Carbon uptake by karsts in the Houzhai Basin,southwest China.
Journal of Geophysical Research,2011,116(G4):1-10
|
CSCD被引
4
次
|
|
|
|
17.
何师意. 高分辨率实时监测技术在岩溶碳汇估算中的应用——以板寨地下河监测站为例.
气候变化研究进展,2011,7(3):157-161
|
CSCD被引
10
次
|
|
|
|
18.
曾成. 建设岩溶水-碳通量大型模拟试验场的构想.
资源环境与工程,2013,27(2):196-221
|
CSCD被引
3
次
|
|
|
|
19.
朱辉. 岩溶作用碳汇强度变化的土地利用调控规律———贵州普定岩溶水-碳通量大型模拟试验场研究.
水文地质工程地质,2015,42(6):120-125
|
CSCD被引
11
次
|
|
|
|
20.
邱冬生. 中国岩石风化作用所致的碳汇能力估算.
地球科学:中国地质大学学报,2004,29(2):177-182
|
CSCD被引
34
次
|
|
|
|
|