8×8分布式电驱动装甲车辆稳定性直接横摆力矩与转矩矢量控制
Direct Yaw Moment and Torque Vector Control for Stability of 8×8 Distributed Electric Drive Armored Vehicles
查看参考文献16篇
文摘
|
为提高车辆的行驶稳定性,发挥轮毂电机驱动的优势,提出一种8×8分布式电驱动轮式装甲车辆直接横摆力矩与转矩矢量控制方法。建立车辆的线性二自由度模型,求得期望横摆角速度和质心侧偏角。设计一种分层控制器:上层控制器为协调横摆角速度和质心侧偏角,采用滑模控制对两个变量的控制输出分别进行计算,并设计加权函数,得到横摆力矩输出;下层控制器将8个车轮按轴分为4组矢量,根据横摆力矩和纵向力需求,按照转矩矢量合成的方法得到各轮转矩。实时仿真实验结果表明,该控制方法能合理分配车轮转矩,有效控制横摆角速度,提高车辆的行驶稳定性。 |
其他语种文摘
|
A direct yaw and torque vector control method for 8×8 distributed electric drive armored vehicles is proposed to improve the vehicle's driving stability and take advantage of the hub motor drive.A linear 2-DOF model of vehicle is established to calculate the desired yaw rate and the sideslip angle.A hierarchical controller is designed based on this model. The upper controller is to coordinate the yaw rate and the sideslip angle. The control outputs of the two variables are calculated by using sliding mode control,and the weight function is designed to obtain the yaw torque output. The lower controller divides the eight wheels into four groups according to the axis. Then the torque of each wheel can be obtained according to the yaw moment and longitudinal force by the torque vector synthesis. The real-time simulated results show that the proposed control method can distribute the wheel torque reasonably,control the yaw rate effectively,and improve the vehicle's driving stability. |
来源
|
兵工学报
,2021,42(10):2196-2205 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2021.10.015
|
关键词
|
轮式装甲车辆
;
分布式电驱动
;
横摆力矩
;
转矩矢量
|
地址
|
陆军装甲兵学院兵器与控制系, 北京, 100072
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
武器装备预研项目
|
文献收藏号
|
CSCD:7090234
|
参考文献 共
16
共1页
|
1.
刘徐坤. 分布式电驱动车辆状态感知与控制研究综述.
机械工程学报,2019,55(22):60-79
|
CSCD被引
2
次
|
|
|
|
2.
阳贵兵. 轮毂电机驱动车辆双重转向直接横摆力矩控制.
兵工学报,2016,37(2):211-218
|
CSCD被引
6
次
|
|
|
|
3.
Ding S H. Sliding mode direct yaw-moment control design for in-wheel electric vehicles.
IEEE Transactions on Industrial Electronics,2017,64(8):6752-6762
|
CSCD被引
29
次
|
|
|
|
4.
Lu Q. Enhancing vehicle cornering limit through sideslip and yaw rate control.
Mechanical Systems and Signal Processing,2016,75:455-472
|
CSCD被引
6
次
|
|
|
|
5.
Lenzo B. Yaw rate and sideslip angle control through single input single output direct yaw moment control.
IEEE Transactions on Control Systems Technology,2020,29(1):124-139
|
CSCD被引
3
次
|
|
|
|
6.
金立生. 基于二次规划的分布式电动汽车稳定性控制.
吉林大学学报(工学版),2018,48(5):1349-1359
|
CSCD被引
6
次
|
|
|
|
7.
Li B. An optimal torque distribution control strategy for four-independent wheel drive electric vehicles.
International Journal of Vehicle Mechanics and Mobility,2015,53(8):1172-1189
|
CSCD被引
19
次
|
|
|
|
8.
马晓军. 军用多轮电驱动车辆稳定性及转矩分配控制.
兵器装备工程学报,2020,41(11):79-84,146
|
CSCD被引
2
次
|
|
|
|
9.
王伟达. 四轮独立驱动电动汽车行驶稳定性分析与联合滑模变结构主动控制.
机械工程学报,2021,57(4):103-112
|
CSCD被引
5
次
|
|
|
|
10.
张晨晨. 质心侧偏角对车辆稳定性影响的研究.
汽车工程,2011,33(4):277-282
|
CSCD被引
18
次
|
|
|
|
11.
阳贵兵.
8×8轮毂电机驱动装甲车辆行驶驱动与稳定性控制研究,2016
|
CSCD被引
2
次
|
|
|
|
12.
Zhai L. Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle.
IEEE Transactions on Vehicular Technology,2016,65(6):4726-4739
|
CSCD被引
39
次
|
|
|
|
13.
Wang J N. Wheel torque distribution optimization of four-wheel independent-drive electric vehicle for energy efficient driving.
Control Engineering Practice,2021,110:104779
|
CSCD被引
7
次
|
|
|
|
14.
张金柱. 电动汽车稳定性的横摆力矩控制.
电机与控制学报,2012,16(6):75-80
|
CSCD被引
12
次
|
|
|
|
15.
Han K. Development of an antilock brake system for electric vehicles without wheel slip and road friction information.
IEEE Transactions on Vehicular Technology,2019,68(6):5506-5517
|
CSCD被引
7
次
|
|
|
|
16.
张运银. 轮毂电机驱动装甲车辆"驾驶员-综合控制器"在环实时仿真.
装甲兵工程学院学报,2015,29(3):32-36,63
|
CSCD被引
1
次
|
|
|
|
|