基于改进LESO的四旋翼无人机模糊线性自抗扰控制方法
Fuzzy Linear Active Disturbance Rejection Control of a Quadrotor UAV via an Improved LESO
查看参考文献30篇
文摘
|
四旋翼无人机系统具有参数不确定性及强耦合性的特点,其飞行性能容易受到外部干扰而下降.为了保证四旋翼无人机飞行的稳定性,本文提出了一种基于改进线性扩张状态观测器(Linear Extended State Observer,LESO)的模糊线性自抗扰控制方法.通过模糊算法自适应调节线性自抗扰控制器的参数,基于Levant跟踪微分器跟踪四旋翼无人机位置及姿态角的二阶微分信号进而提取四旋翼无人机系统的总扰动,使用总扰动偏差及偏差的微分作为输入的模糊控制器来优化LESO对总扰动的估计精度.此外,分析了LESO的收敛性及闭环系统的稳定性.最后通过对比仿真验证了所提控制策略的有效性,并从系统的控制信号,动态响应能力和抗干扰能力等方面对控制方案的性能进行了定量分析. |
其他语种文摘
|
A quadrotor unmanned aerial vehicle (UAV) system is full of parameter uncertainties and strong couplings,and the performance of a quadrotor UAV is easily degraded by external disturbances.To ensure the flight stability of the quadrotor UAV,a fuzzy linear active disturbance rejection control based on an improved linear extended state observer(LESO) is proposed in this paper.Parameters of the linear active disturbance rejection control are adaptively adjusted by a fuzzy algorithm,and the second-order differential signal of position and attitude angle of the quadrotor UAV is extracted by a levant tracking differentiator,and then the total disturbance of the quadrotor UAV is extracted,the fuzzy controller takes the total disturbance deviation and its differential as input,thus optimizing the estimation accuracy of the LESO for the total disturbance.The convergence of the LESO and the stability of the closed-loop system are analyzed.Finally,the proposed control strategy is verified from the control signals,dynamic responses and of the robustness of the system. |
来源
|
电子学报
,2024,52(9):3185-3194 【核心库】
|
DOI
|
10.12263/DZXB.20230854
|
关键词
|
四旋翼无人机
;
线性扩张状态观测器
;
模糊控制
;
Levant跟踪微分器
|
地址
|
北京建筑大学电气与信息工程学院, 北京, 102627
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7833255
|
参考文献 共
30
共2页
|
1.
陈柯宇. 基于数字信息素的无人机集群频谱监视控制算法.
电子学报,2023,51(6):1541-1551
|
CSCD被引
1
次
|
|
|
|
2.
Karahan M. Robust backstepping control of a quadrotor UAV under pink noise and sinusoidal disturbance.
Studies in Informatics and Control,2023,32(2):15-24
|
CSCD被引
1
次
|
|
|
|
3.
Shao S K. Robust fixed-time formation control for quadrotor unmanned aerial vehicles with directed topology.
Transactions of the Institute of Measurement and Control,2022,44(2):324-338
|
CSCD被引
2
次
|
|
|
|
4.
Nedjati A. Post-earthquake response by small UAV helicopters.
Natural Hazards,2016,80(3):1669-1688
|
CSCD被引
4
次
|
|
|
|
5.
范云生. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制.
自动化学报,2023,49(8):1758-1770
|
CSCD被引
4
次
|
|
|
|
6.
Shao S Y. Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer.
IEEE/ASME Transactions on Mechatronics,2021,26(2):689-699
|
CSCD被引
4
次
|
|
|
|
7.
Zhou L R. Modeling and PID control of quadrotor UAV based on machine learning.
Journal of Intelligent Systems,2022,31(1):1112-1122
|
CSCD被引
2
次
|
|
|
|
8.
Yang S. Aerodynamic-Parameter Identification and Attitude Control of Quad-Rotor Model with CIFER and Adaptive LADRC.
Chinese Journal of Mechanical Engineering,2021,34(1):1
|
CSCD被引
5
次
|
|
|
|
9.
Koksal N. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance.
ISA Transactions,2020,105:98-110
|
CSCD被引
7
次
|
|
|
|
10.
Wang Z J. Based on robust sliding mode and linear active disturbance rejection control for attitude of quadrotor load UAV.
Nonlinear Dynamics,2022,108(4):3485-3503
|
CSCD被引
1
次
|
|
|
|
11.
Cardoso D N. A new robust adaptive mixing control for trajectory tracking with improved forward flight of a tilt-rotor UAV.
ISA Transactions,2021,110:86-104
|
CSCD被引
7
次
|
|
|
|
12.
Xu Q Z. Adaptive neural network finite time control for quadrotor UAV with unknown input saturation.
Nonlinear Dynamics,2019,98(3):1973-1998
|
CSCD被引
9
次
|
|
|
|
13.
Shu P F. Robust adaptive control for a novel fully-actuated octocopter UAV with wind disturbance.
Journal of Intelligent & Robotic Systems,2021,103(1):6
|
CSCD被引
1
次
|
|
|
|
14.
Li J J. Robust fault tolerant control based on LADRC for the quadrotor.
Pacific Journal of optimization,2020,16(1):19-37
|
CSCD被引
1
次
|
|
|
|
15.
Wei W. Active disturbance rejection control for nanopositioning: A robust Umodel approach.
ISA Transactions,2022,128(Pt B):599-610
|
CSCD被引
1
次
|
|
|
|
16.
张磊. 基于变增益自抗扰技术的机器人轨迹跟踪控制方法.
电子学报,2022,50(1):89-97
|
CSCD被引
4
次
|
|
|
|
17.
Wang Z J. Adaptive-based linear active disturbance rejection attitude control for quadrotor with external disturbances.
Transactions of the Institute of Measurement and Control,2022,44(2):286-298
|
CSCD被引
1
次
|
|
|
|
18.
Song J. Fractional-order linear active disturbance rejection control design and optimization based improved sparrow search algorithm for quadrotor UAV with system uncertainties and external disturbance.
Drones,2022,6(9):229
|
CSCD被引
2
次
|
|
|
|
19.
Wang S B. An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV.
ISA Transactions,2022,129:564-579
|
CSCD被引
5
次
|
|
|
|
20.
Zhao Y T. On tuning of ADRC with competing design indices: a quantitative study.
Control Theory and Technology,2023,21(1):16-33
|
CSCD被引
2
次
|
|
|
|
|