γ-TiAl金属间化合物铣削加工实验与有限元模拟
Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics
查看参考文献26篇
文摘
|
运用ABAQUS有限元软件建立了γ-TiAl金属间化合物铣削加工的细观模型,分析了不同材料模型的加工表面形貌及边缘断裂形成机理。结果表明,由于片层之间的材料特性不同,加工过程中片层与片层之间更容易出现裂纹或凹坑。同时,由于其较低的延展性,γ-TiAl金属间化合物加工出口处形成较大的负剪切平面,从而导致边缘断裂。通过与实验结果比较,发现γ-TiAl金属间化合物铣削加工表面粗糙度和边缘断口尺寸均小于由正六边形片层细观模型所得的模拟值,且略高于由矩形片层细观模型所得的模拟值。同时,加工表面粗糙度和边缘断口尺寸随切削深度的增加而逐渐增大,而切削速率的影响较小。因此,为了得到更好的加工表面质量,γ-TiAl金属间化合物加工过程中应尽可能地采用较高的切削速率,而不是切削深度。 |
其他语种文摘
|
γ-TiAl intermetallics are attractive candidates for applications in aircraft turbine engines due to their low density and good mechanical properties at high temperature. However, the low room temperature ductility makes the machinability of these materials poorer compared to the conventional alloys. In this work, a meso-model of γ-TiAI intermetallic was developed using ABAQUS finite element software. The surface morphology and edge fracture mechanism of different material models were analyzed, and the effects of cutting parameters on the surface roughness and size of edge fracture were investigated. The results indicate that the cracks and pits occur between the lamellar and lamellar with different material properties. At the same time, due to the low ductility of γ-TiAI intermetallic, the negative shear angle begins to form at the exit of workpiece, then the edge fracture is formed. In addition, for both surface roughness and size of edge fracture, the experimental data are slightly higher than the simulated data obtained by the hexagonal lamellar model, and smaller than those obtained by the rectangular lamellar model. With the increasing of cutting depth, the surface roughness and the size of edge fracture increase gradually, on the contrary, the cutting speed has a small effect on them. Therefore, in order to obtain a fine surface quality during machining of γ-TiAI intermetallic, the cutting speed can be adopted as higher as possible, but not the cutting depth. |
来源
|
金属学报
,2017,53(4):505-512 【核心库】
|
DOI
|
10.11900/0412.1961.2016.00256
|
关键词
|
γ-TiAl金属间化合物
;
铣削加工
;
细观模型
;
有限元
|
地址
|
1.
沈阳理工大学机械工程学院, 沈阳, 110159
2.
中国科学院金属研究所, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
辽宁省教育厅一般项目
|
文献收藏号
|
CSCD:5958943
|
参考文献 共
26
共2页
|
1.
Klocke F. On high-speed turning of a third-generation gamma titanium aluminide.
Int. J. Adv. Manuf. Technol,2013,65:155
|
CSCD被引
8
次
|
|
|
|
2.
Boyer R R. An overview on the use of titanium in the aerospace industry.
Mater. Sci. Eng. A,1996,213:103
|
CSCD被引
376
次
|
|
|
|
3.
刘仁慈. Ti-45.5A1-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究.
金属学报,2013,49:641
|
CSCD被引
9
次
|
|
|
|
4.
Aspinwall D K. The machining of γ-TiAl intermetallic alloys.
CIRP Ann.-Manuf. Technol,2005,54:99
|
CSCD被引
16
次
|
|
|
|
5.
彭英博. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系.
金属学报,2013,49:1457
|
CSCD被引
5
次
|
|
|
|
6.
Kad B K. Numerical simulations of stress-strain behavior in two-phase a_2 + γ lamellar TiAl alloys.
Mater. Sci. Eng. A,1995,192/193:97
|
CSCD被引
10
次
|
|
|
|
7.
苏继龙. 晶粒尺寸和片层厚度对全片层γ-TiAl基合金屈服强度的影响.
航空材料学报,2009,29(4):1
|
CSCD被引
1
次
|
|
|
|
8.
苏继龙. γ-TiAl基PST晶体的屈服应力及孪晶影响的细观力学研究.
金属学报,2005,41:1243
|
CSCD被引
1
次
|
|
|
|
9.
Inui H. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl.
Acta Metall. Mater,1992,40:3095
|
CSCD被引
47
次
|
|
|
|
10.
林建国. Ti-48Al合金PST晶体显微组织及高温压缩性能.
航空材料学报,1998,18(1):1
|
CSCD被引
1
次
|
|
|
|
11.
郑瑞廷. 晶界对全片层组织γ-TiAl合金断裂韧性的影响.
稀有金属材料与工程,2003,32:1003
|
CSCD被引
5
次
|
|
|
|
12.
付连峰. 全片层TiAl基合金的屈服强度与显微组织关系.
稀有金属材料与工程,2001,30:178
|
CSCD被引
4
次
|
|
|
|
13.
Priarone P C. Tool wear and surface quality in milling of a gamma-TiAl intermetallic.
Int. J. Adv. Manuf. Technol,2012,61:25
|
CSCD被引
9
次
|
|
|
|
14.
Perez R G V. Wear mechanisms of WC inserts in face milling of gamma titanium aluminides.
Wear,2005,259:1160
|
CSCD被引
2
次
|
|
|
|
15.
Priarone P C. Effects of cutting angle, edge preparation, and nanostructured coating on milling performance of a gamma titanium aluminide.
J. Mater. Process. Technol,2012,212:2619
|
CSCD被引
7
次
|
|
|
|
16.
Kolahdouz S. Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions.
Proc. CIRP,2015,26:367
|
CSCD被引
5
次
|
|
|
|
17.
Klocke F. High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity.
Wear,2013,302:1136
|
CSCD被引
14
次
|
|
|
|
18.
Hood R. High speed ball nose end milling ofγ-TiAl alloys.
Intermetallics,2013,32:284
|
CSCD被引
7
次
|
|
|
|
19.
Mantle A L. Surface integrity of a high speed milled gamma titanium aluminide.
J. Mater. Process. Technol,2001,118:143
|
CSCD被引
18
次
|
|
|
|
20.
Hood R. Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy.
CIRP Ann.-Manuf. Technol,2014,63:53
|
CSCD被引
5
次
|
|
|
|
|