纳米金属材料的界面力学行为研究
INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS
查看参考文献74篇
文摘
|
将常规多晶材料的粗晶粒尺寸缩小到纳米尺度时,这些纳米晶体材料会呈现出与其对应的粗晶材料迥异的物理现象.与材料力学行为最相关的是强度及塑形变形机理这两个方面.考虑到晶界的变形与破坏可能是纳米晶体材料低塑性的根源,克服纳米晶体材料中强度与韧性之间存在的“熊掌和鱼不可兼得”的问题,也通常称为晶界工程.在众多的晶界中,孪晶界面被发现可同时保持材料的强度和韧性.本文主要就纳米金属材料中界面的力学行为做一个简要述,包含晶界的强化力学机理以及新型孪晶界面的力学行为与揭示内在尺度效应的模型研究。 |
其他语种文摘
|
When grain sizes of crystals are down to nano-scale, the so-called nanocrystalline materials exhibit distinct physical properties in contrast to their conventional counterparts. The strength and plastic deformation mechanisms were among the most broadly investigated properties from mechanical society. Since deformation and pre-mature failure in interfaces (including grain boundaries, twin boundaries, and interfaces between different media) could be the origin of low ductility in nanocrystalline materials, the effort to evade the strength-ductility tradeoff dilemma in nanocrystalline materials, by tuning their interfacial structures/properties, is usually called as interfa-cial engineering. Twin boundaries stand out among all possible boundary structures for their capability to enhance strength and retain ductility of crystalline metals. In this paper, current understanding about the mechanical behavior associated with interfaces in nanostructured metals is reviewed, with a focus on the strengthening mechanisms played by twin/grain boundaries and current physical models to shed light on the size-effect induced by grain sizes and twin thicknesses. |
来源
|
金属学报
,2014,50(2):183-190 【核心库】
|
DOI
|
10.3724/sp.j.1037.2013.00823
|
关键词
|
纳米晶体
;
晶界/孪晶界
;
强度/塑性
;
力学模型
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家973计划
;
国家自然科学基金项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:5086916
|
参考文献 共
74
共4页
|
1.
Feynman R.
Caltech Eng Sci,1960,23:22
|
CSCD被引
1
次
|
|
|
|
2.
Taniguchi N.
Proc Int Conf Prod Eng Tokyo, Part II,1974:18
|
CSCD被引
1
次
|
|
|
|
3.
Gleiter H.
Proc 2nd Riso International Symposium on Metallurgy and Materials Science,1981:15
|
CSCD被引
1
次
|
|
|
|
4.
Gleiter H.
Progress Mater Sci,1989,33:223
|
CSCD被引
220
次
|
|
|
|
5.
Hall E O.
Proc Phys Soc. B,1951,64:747
|
CSCD被引
307
次
|
|
|
|
6.
Petch N J.
J Iron Steel Inst,1953,174:25
|
CSCD被引
237
次
|
|
|
|
7.
Peirls R.
Proc Phys Soc,1940,52:34
|
CSCD被引
1
次
|
|
|
|
8.
Cottrell A H.
Trans Metall Soc AIME,1958,212:192
|
CSCD被引
2
次
|
|
|
|
9.
Li J C M.
Trans Metall Soc AIME,1963,227:239
|
CSCD被引
3
次
|
|
|
|
10.
Coble R L.
J Appl Phys,1963,34:1679
|
CSCD被引
44
次
|
|
|
|
11.
Koch C C.
Structural Nanocrystalline Materials: Fundamentals and Applications,2007
|
CSCD被引
3
次
|
|
|
|
12.
Tjong S C.
Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications,2013
|
CSCD被引
1
次
|
|
|
|
13.
Kumar K S.
Acta Mater,2003,51:5743
|
CSCD被引
91
次
|
|
|
|
14.
Meyers M A.
Prog Mater Sci,2006,51:427
|
CSCD被引
224
次
|
|
|
|
15.
Zhu T T.
Mater Technol,2008,23:193
|
CSCD被引
4
次
|
|
|
|
16.
Dao M.
Acta Mater,2007,55:4041
|
CSCD被引
52
次
|
|
|
|
17.
Wolf D.
Acta Mater,2005,53:1
|
CSCD被引
22
次
|
|
|
|
18.
Yamakov V.
Nat Mater,2004,3:43
|
CSCD被引
46
次
|
|
|
|
19.
Zhu T.
Prog Mater Sci,2010,55:710
|
CSCD被引
39
次
|
|
|
|
20.
Lu K.
Science,2009,324:349
|
CSCD被引
227
次
|
|
|
|
|