医用镁合金植入材料的发展策略及演进趋势
Development strategy and trend of medical magnesium alloy implant materials
查看参考文献95篇
文摘
|
镁合金凭借其优异的生物安全性、生物诱导性、生物相容性及可贵的自降解性能,在骨植入及心血管支架领域具有广泛的临床应用前景。本文从合金化、制备方法、热处理及表面改性这四方面系统综述了近年来医用镁合金的研究进展,重点分析了各种工艺及表面改性方法的基本原理、技术优劣势,总结了它们对镁合金组织、性能的影响。针对镁合金临床应用的瓶颈,提出医用镁合金植入材料的最佳发展策略:一方面,通过合金化、制备方法及热处理三种工艺的协同耦合实现与自然骨组织力学行为的有效匹配;另一方面,通过表面改性处理实现对镁合金降解速率的精准调控。通过两种或多种表面改性技术的组合与交互来实现多功能性需求将成为未来镁合金表面改性技术的主要演进趋势。 |
其他语种文摘
|
Magnesium alloys features excellent biological safety,biological induction,biocompatibility and valuable self-degradability,which leads to its broad clinical application prospects in the field of bone implantation and cardiovascular stents.In this paper,the research progress of medical magnesium alloy in recent years was systematically reviewed in four aspects:alloying,preparation methods,heat treatment and surface modification.The basic principles,technical advantages and disadvantages of various processes and surface modification methods were mainly analysed,and their effects on the microstructure and properties of magnesium alloys were summarized.In order to break the limitations of clinical application of magnesium alloy,the best development strategy of medical magnesium alloy implant materials was proposed:on the one hand,effectively match with the mechanical behaviour of natural bone tissue through the synergistic coupling of alloying,preparation and heat treatment;on the other hand,precisely regulate the degradation rate of magnesium alloy through the modification of the surface.It has become the main development trend for the surface modification technology of magnesium alloy in the future that two or more surface modification techniques are combined and interacted to achieve multi-function requirements. |
来源
|
材料工程
,2023,51(7):89-101 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000831
|
关键词
|
医用镁合金
;
植入材料
;
工艺的协同耦合
;
组合与交互
|
地址
|
1.
河南工学院电缆工程学院, 河南, 新乡, 453003
2.
河南工学院车辆与交通工程学院, 河南, 新乡, 453003
3.
河南工学院电气工程与自动化学院, 河南, 新乡, 453003
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
河南省科技攻关项目
;
河南工学院本科高等教育教学改革研究与实践项目
|
文献收藏号
|
CSCD:7529777
|
参考文献 共
95
共5页
|
1.
李浩. 医用镁合金表面阳极氧化/茶多酚复合转化层耐腐蚀性能研究.
表面技术,2023,52(1):196-205
|
CSCD被引
2
次
|
|
|
|
2.
郑玉峰. 处在变革中的医用金属材料.
金属学报,2017,53(3):257-297
|
CSCD被引
28
次
|
|
|
|
3.
李伟健.
医用可降解多孔锌镁合金的制备及性能研究,2019
|
CSCD被引
2
次
|
|
|
|
4.
徐春阳.
可降解生物镁基泡沫材料的制备与性能,2017
|
CSCD被引
1
次
|
|
|
|
5.
Mohamed A. Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications.
Journal of Magnesium and Alloys,2019,7(2):249-257
|
CSCD被引
24
次
|
|
|
|
6.
Song M S. Recent advances in biodegradation controls over Mg alloys for bone fracture management:A review.
Journal of Materials Science and Technology,2019,35(4):535-544
|
CSCD被引
58
次
|
|
|
|
7.
Sepideh K. Biodegradable magnesium alloys as temporary orthopaedic implants:a review.
Biometals,2019,32(2):185-193
|
CSCD被引
35
次
|
|
|
|
8.
Li G Y. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: an in vitro and in vivo study.
Acta Biomaterialia,2018,65:486-500
|
CSCD被引
15
次
|
|
|
|
9.
Oshibe N. Degradation and interaction with bone of magnesium alloy WE43implants:a longterm follow-up in vivo rat tibia study.
Journal of Biomaterials Applications,2019,33(9):1157-1167
|
CSCD被引
4
次
|
|
|
|
10.
Witte F. In vivo corrosion of four magnesium alloys and the associated bone response.
Biomaterials,2005,26(17):3557-3563
|
CSCD被引
298
次
|
|
|
|
11.
何薇.
植入镁对大鼠牙周炎作用的实验研究,2020
|
CSCD被引
1
次
|
|
|
|
12.
贺祖斌. 骨科微生物力学研究进展.
右江医学,2020,48(10):721-726
|
CSCD被引
1
次
|
|
|
|
13.
宋奎.
医用生物镁锌合金微管显微组织和性能研究,2018
|
CSCD被引
1
次
|
|
|
|
14.
李秋炎.
医用载药多孔镁结构性能及生物相容性研究,2017
|
CSCD被引
1
次
|
|
|
|
15.
Erinc M. Applicability of existing magnesium alloys as biomedical implant materials.
Magnesium Technology,2009,21:209-214
|
CSCD被引
13
次
|
|
|
|
16.
Bohlen J. Alloying and processing effects on the microstructure,mechanical properties, and degradation behavior of extruded magnesium alloys containing calcium,cerium,or silver.
Materials,2020,13(2):391-410
|
CSCD被引
3
次
|
|
|
|
17.
Bakhsheshi-Rad H R. The mechanical properties and corrosion behavior of double-layered nano hydroxyapatite-polymer coating on Mg-Ca alloy.
Journal of Materials Engineering and Performance,2015,24(10):4010-4021
|
CSCD被引
6
次
|
|
|
|
18.
Li H X. Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys.
International Journal of Minerals Metallurgy and Materials,2018,25(7):800-809
|
CSCD被引
17
次
|
|
|
|
19.
Bian D. In vitro and in vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopedic implant applications.
ACS Applied Materials &Interfaces,2018,10(5):4394-4408
|
CSCD被引
18
次
|
|
|
|
20.
Lin H. Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy.
Progress in Natural Science:Materials International,2018,28(1):66-73
|
CSCD被引
8
次
|
|
|
|
|