三维木头海绵-石墨烯/环氧树脂复合材料的制备及性能
Preparation and properties of epoxy composites reinforced by three-dimensional wood sponge-graphene
查看参考文献19篇
文摘
|
采用天然巴沙木作为原材料,进行选择性刻蚀,得到三维层状结构的木头海绵。以木头海绵为模板,在负载一定比例的还原氧化石墨烯(rGO)与石墨烯纳米片(GNP)后,通过真空浸渍的方法与环氧树脂复合并固化,制备得到石墨烯-木头海绵(G-WS)/环氧树脂复合材料。结果表明:采用真空浸渍的方法,能够成功使氧化石墨烯(GO)在水热还原的同时,带动GNP负载到木头海绵表面,同时GO被还原成为rGO,经过与环氧树脂复合后,在环氧树脂内部,G-WS仍然保持良好的三维结构,这种取向分层结构使复合材料具有导热的各向异性,三维连通的结构也为良好的热导率奠定了基础。当填料质量分数为1.45%时,沿取向结构方向的热导率能够达到1.59W·m~(-1)·K~(-1),相比于纯环氧树脂而言,热导率提升率高达457%。同时由于木头海绵内部层状的结构,赋予了G-WS良好的压缩回弹性能,能够实现80%压缩以及40%形变压缩,循环100次但不发生明显形变。 |
其他语种文摘
|
The selectively etch nature balsa wood,leading to a wood sponge with three-dimensional (3D)lamellar structure.After loading a certain proportion of reduced graphene oxide(rGO)and graphene nanosheets(GNP),the graphene-wood sponge(G-WS)/epoxy resin composite was prepared by vacuum impregnation and curing with epoxy resin.After loading graphene via hydrothermal reduction,graphene oxide(GO)is reduced to rGO.During the self-assembly of rGO sheets,GNP are wrapped and connected by rGO sheets byπ-πinteractions.Meanwhile,G-WS can also maintain the good 3Dstructure after vacuum impregnation.The lamellar structure inherited from the wood stock that can lead to anisotropic conductivity G-WS with epoxy resin,at loading of 1.45%(mass fraction, the same below),represents a high through-plane thermal conductivity of 1.59 W·m~(-1)·K~(-1), compared to the neat epoxy matrix,which is equivalent to a significant enhancement 457%of per 1% loading.The lamellar structure made the G-WS can achieve 80%compression and 40% deformation and compression cycles for 100times without significant deformation. |
来源
|
材料工程
,2023,51(9):200-207 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000260
|
关键词
|
石墨烯
;
热导率
;
环氧树脂
;
石墨烯基复合材料
|
地址
|
1.
中国航发北京航空材料研究院, 北京, 100095
2.
北京石墨烯技术研究院有限公司, 北京, 100094
3.
北京市石墨烯及应用工程技术研究中心, 北京市石墨烯及应用工程技术研究中心, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
一般工业技术 |
基金
|
国家自然科学基金项目
;
北京市科技计划项目
|
文献收藏号
|
CSCD:7574284
|
参考文献 共
19
共1页
|
1.
Huang X Y. Thermal conductivity of graphene-based polymer nanocomposites.
Materials Science and Engineering,2020,142:100577
|
CSCD被引
20
次
|
|
|
|
2.
Alam F E. In situformation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity.
Journal of Materials Chemistry A,2017,5(13):6164-6169
|
CSCD被引
15
次
|
|
|
|
3.
Yang X T. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3dcopper nanowires/thermally annealed graphene aerogel framework.
Composites Part A,2020,128:105670
|
CSCD被引
48
次
|
|
|
|
4.
郭建强. 氧化石墨烯的化学还原方法与机理研究进展.
材料工程,2020,48(7):24-35
|
CSCD被引
6
次
|
|
|
|
5.
Song P. Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities.
Nano-micro Letters,2021,13(1):91
|
CSCD被引
94
次
|
|
|
|
6.
Feng Y Z. Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy.
Chemical Engineering Journal,2020,379:122402
|
CSCD被引
13
次
|
|
|
|
7.
李岳. 石墨烯导热材料研究进展.
材料工程,2021,4(1):1-13
|
CSCD被引
1
次
|
|
|
|
8.
Guo J Q. Rethinking the reaction pathways of chemical reduction of graphene oxide.
Carbon,2021,171:963-967
|
CSCD被引
2
次
|
|
|
|
9.
An F. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities.
ACS Applied Materials &Interfaces,2018,10(20):17383-17392
|
CSCD被引
29
次
|
|
|
|
10.
Chen J. Cellulose nanofiber supported 3dinterconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability.
Advanced Functional Materials,2017,27(5):1604754
|
CSCD被引
59
次
|
|
|
|
11.
Qin M M. Efficiently controlling the 3dthermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge.
Advanced Functional Materials,2018,28(45):1805053
|
CSCD被引
33
次
|
|
|
|
12.
Yao Y M. Construction of 3d skeleton for polymer composites achieving a high thermal conductivity.
Small,2018,14(13):1704044
|
CSCD被引
31
次
|
|
|
|
13.
Hu J T. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bn.
ACS Applied Materials & Interfaces,2017,9(15):13544-13553
|
CSCD被引
45
次
|
|
|
|
14.
Liu P F. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness.
Nano-micro Letters,2020,13(1):1-15
|
CSCD被引
43
次
|
|
|
|
15.
Min P. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion.
Advanced Functional Materials,2018,28(51):1805365
|
CSCD被引
29
次
|
|
|
|
16.
Li Y. Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity.
Journal of Materials Chemistry C,2019,7(38):11783-11789
|
CSCD被引
11
次
|
|
|
|
17.
Guan H. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents.
ACS Nano,2018,12(10):10365-10373
|
CSCD被引
49
次
|
|
|
|
18.
Song J W. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers.
ACS Nano,2018,12(1):140-147
|
CSCD被引
18
次
|
|
|
|
19.
Zeng X L. Ice-templated assembly strategy to construct 3dboron nitride nanosheet networks in polymer composites for thermal conductivity improvement.
Small,2015,11(46):6205-6213
|
CSCD被引
50
次
|
|
|
|
|