凯氏蒸馏法和元素分析仪法测定沉积物中全氮含量的异同及其意义
Kjeldahl method and the elemental analyzer method in measurement of total nitrogen in sediments: Comparison and its significance
查看参考文献27篇
文摘
|
氮循环是生物地球化学研究领域中最重要的课题之一,全氮含量的测定是农业、生物和环境等多领域研究中的常规测试项目。凯氏蒸馏法和元素分析仪法作为常规方法通用于上述领域的全氮含量测定,但两种方法在实际应用中的差异却常被忽视。通过对中国北方某盐湖沉积物序列近百个样品的全氮含量分析,对两种方法测定结果的异同进行了对比研究。凯氏蒸馏法的分析精密度高于元素分析仪法(前者标准偏差为0.007,后者为0.024),但在样品硝态和亚硝态氮的含量较高时,凯氏蒸馏法所测结果显著低于元素分析仪法的测定结果,此时选择元素分析仪法进行全氮含量的测定更为可靠和准确;对硝态和亚硝态氮含量极低的样品,两种方法的测定结果无显著差异。研究表明,选择全氮含量的测定方法,必须对所测样品的无机氮含量有初步的了解。对于中国北方的多数盐湖和地表环境样品,由于其无机氮的含量较高,选择凯氏蒸馏法进行全氮含量的测定是不适当的。尽管如此,对所研究的湖泊沉积物剖面而言,两种方法的对比却可以提供有价值的气候和环境演变信息。随着沉积物剖面的由深到浅,两种方法的测定结果由一致变化到存在显著差异,表明了湖泊水体从早期的淡水向今天的盐湖演化的过程。因此,凯氏蒸馏法和元素分析仪法测定结果的差异可以作为一种独立的地球化学气候代用指标。 |
其他语种文摘
|
Nitrogen cycle is an important biogeochemical process in the environment. Measurement of total nitrogen (TN) is a routine experiment in researches in agriculture, biology and environmental sciences. Kjeldahl method (KM) and elemental analyzer method (EA) are commonly used in measuring TN. Their difference, however, is often overlooked. A comparative study on the two methods is conducted by analysis of TN in nearly 100 samples from the sediment sequence of Gouchi, a salt lake in North China. KM is better than EA with a precision of 0. 007 vs.0. 024. With the presence of nitrate and/or nitrite nitrogen, however, measurement by KM is considerably lower than that by EA. To analyze TN in this kind of samples, EA is the correct choice. For samples without or with negligible nitrate and/or nitrite nitrogen, both techniques are applicable. It is necessary, therefore, to have a first estimate of the TN in samples before making choice of the methods. For samples from lake sediment sequences or soils in North China, KM is inapplicable for TN analysis because of their usually high content of nitrous salt. Despite the inconsistency, use of both methods to the same samples makes sense in reconstructions of climatic and environmental changes from lake sediments. In lake Gouchi, TN content by the two methods changed generally from the same in the lower part of the sequence to the significant difference in the upper part, suggesting a broad change from a fresh water lake to the present day salt lake. Our data indicate that the difference of the TN by the two methods can serve as an independent climatic proxy. |
来源
|
地球化学
,2006,35(3):319-324 【核心库】
|
关键词
|
土壤
;
湖泊
;
沉积物
;
氮
;
凯氏蒸馏法
;
元素分析仪法
;
氮循环
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
中国科学院“百人计划”项目
;
国家973计划
|
文献收藏号
|
CSCD:2450544
|
参考文献 共
27
共2页
|
1.
Galloway J N. The global nitrogen cycle:Changes and consequences.
Environ Pollut,1998,102(1,suppl.1):15-24
|
CSCD被引
35
次
|
|
|
|
2.
Buondonno A. Némethc K Barbierid G De Pascaled S.
Eur J Agron,1997,7(4):293-300
|
CSCD被引
6
次
|
|
|
|
3.
Abad M B. The influence of solid urban waste compost and nitrogen-mineral fertilizer on growth and productivity in potatoes.
Commun Soil Sci Plant Anal,1997,28(17/18):1653-1661
|
CSCD被引
2
次
|
|
|
|
4.
Everaarts A P. Nitrogen balance during growth of cauliflower.
Scientia Horticulturae,2000,83(4):173-186
|
CSCD被引
2
次
|
|
|
|
5.
袁旭音. 太湖北部底泥中氮、磷的空间变化和环境意义.
地球化学,2002,31(4):321-328
|
CSCD被引
35
次
|
|
|
|
6.
王雨春. 红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征.
湖泊科学,2002,14(4):301-309
|
CSCD被引
56
次
|
|
|
|
7.
Tsirtsis G E. Modelling the nitrogen cycle in a eutrophic coastal marine environment influenced by sewage effluents∥(O)zhan E.
Proceedings of the 2nd International Conference on the Mediterranean Coastal Environment(MEDCOAST 95),1995:1347-1356
|
CSCD被引
1
次
|
|
|
|
8.
Qu Wenchuan. A 14000-year record of paleoenvironmental change in the western basin of Chinas third largest lake Lake Taihu.
Hydrobiologia,2000,432(1/3):113-120
|
CSCD被引
2
次
|
|
|
|
9.
白雁. 海南岛双池玛珥湖沉积中的碳、氮地球化学记录及其环境意义.
古地理学报,2003,5(1):87-93
|
CSCD被引
13
次
|
|
|
|
10.
杨洪. 武汉东湖沉积物碳氮磷垂向分布研究.
地球化学,2004,33(5):507-514
|
CSCD被引
38
次
|
|
|
|
11.
蔡利华. 流动注射法测土壤全氮全磷.
塔里木农垦大学学报,2002,14(1):25-28
|
CSCD被引
1
次
|
|
|
|
12.
Colombini S. Use of column-switching ion chromatography for the simultaneous determination of total nitrogen and phosphorus after microwave assisted persulphate digestion.
J Chrom A,1998,822(1):162-166
|
CSCD被引
4
次
|
|
|
|
13.
Carneiro J M T.
Anal Chim Acta,2000,416(2):185-190
|
CSCD被引
1
次
|
|
|
|
14.
Nkonge C. A sensitive colorimetric procedure for nitrogen determination in micro-kjeldahl digests.
J Agric Food Chem,1982,30(3):416-420
|
CSCD被引
2
次
|
|
|
|
15.
鲍士旦.
土壤农化分析 .第3版,2000:42-49
|
CSCD被引
1
次
|
|
|
|
16.
The Perkin Elmer Corporation.
Perkin Elmer Model 2400 Elemental Analyzer Instruction Manual,1988
|
CSCD被引
1
次
|
|
|
|
17.
Korn M d G A.
Talanta,2005,65(3):710-715
|
CSCD被引
1
次
|
|
|
|
18.
Smith A J. Microdetermination of carbon hydrogen nitrogen and oxygen in petroleum compounds with an automatic elemental analyzer.
Microchim Acta,1972,60(2):217-222
|
CSCD被引
1
次
|
|
|
|
19.
Smart M M. A comparison of a persulfate digestion and the Kjeldahl procedure for determination of total nitrogen in freshwater samples.
Water Res,1981,15(7):919-921
|
CSCD被引
2
次
|
|
|
|
20.
Fritz D A. Closing the automation loop for carbon hydrogen and nitrogen analyses.
Microchim Acta,1984,83(3/4):191-204
|
CSCD被引
1
次
|
|
|
|
|