稀土掺杂热障涂层的研究进展
Research progress of rare earth doped thermal barrier coatings
查看参考文献57篇
文摘
|
热障涂层是一种隔热和防护的陶瓷材料,可以有效提高航空发动机的工作温度和使用寿命,在该领域有着重要的经济价值和战略地位。随着先进发动机向高推重比方向发展,传统YSZ热障涂层已无法满足新的技术要求。近年来的研究表明,稀土掺杂在一定程度上可以改善热障涂层的使用性能。因此,稀土掺杂改性成为当前研制新型高性能热障涂层的重点方向。本文总结了目前稀土掺杂在高性能热障涂层材料的应用,着重介绍稀土掺杂在热障涂层力学、热物理和抗熔融CMAS腐蚀性能方面的影响效果,阐述在稀土过量掺杂时,热障涂层性能恶化的问题与稀土种类选择依据的不足,并认为稀土掺杂量和种类的选择将是下一代热障涂层材料的研究重点。如何进一步提高热障涂层的性能是未来稀土掺杂热障涂层的发展方向。 |
其他语种文摘
|
Thermal barrier coating (TBC) is a kind of thermal insulation and protective ceramic material, which can effectively improve the working temperature and service life of aero-engine. It has important economic value and strategic position in this field. With the further improvement of thrust-to-weight ratio, the traditional YSZ coating no longer can meet the technical requirements of the new generation engine. In recent years, scholars both at home and abroad have shown that rare earth doping can improve the performance of TBCs to a certain extent. Therefore, rare earth doping modification has become the focus of the development of new high-performance TBCs. In this paper, the applications of rare earth doping in high-performance TBCs are summarized, with emphasis on the effects of rare earth doping on the mechanical, thermal-physical and corrosion resistance of TBCs to molten CMAS. The problem of performance deterioration of TBCs when rare earth is over doped and the deficiency in rare earth selection standard is discussed. Moreover, it is considered that the selection basis of rare earth doping amount and type will be the research focus of TBC materials in the next generation. How to further improves the performance of TBCs is the future development direction of rare earth doped TBCs. |
来源
|
航空材料学报
,2021,41(4):83-95 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000062
|
关键词
|
热障涂层
;
稀土
;
力学性能
;
热物理性能
;
熔融CMAS
|
地址
|
1.
南昌航空大学材料科学与工程学院, 南昌, 330063
2.
北京航空航天大学材料科学与工程学院, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
江西省自然科学基金
|
文献收藏号
|
CSCD:7041420
|
参考文献 共
57
共3页
|
1.
Mostafapour L. Kinetic evaluation of YSZ/Al_2O_3 nanocomposite coatings fabricated by electrophoretic deposition on a nickelbased superalloy.
Processing and Application of Ceramics,2021,15(1):1-10
|
CSCD被引
2
次
|
|
|
|
2.
Goral M. TEM investigations of TGO formation during cyclic oxidation in two-and three-layered thermal barrier coatings produced using LPPS,CVD and PSPVD methods.
Surface and Coatings Technology,2020,394:125875
|
CSCD被引
3
次
|
|
|
|
3.
Krishnasamy J. Thermal cyclic behavior and lifetime prediction of self-healing thermal barrier coatings.
International Journal of Solids and Structures,2021,222:111034
|
CSCD被引
2
次
|
|
|
|
4.
Qu L. An atomistic-scale study for thermal conductivity and thermochemical compatibility in( DyY) Zr_2O_7 combining an experimental approach with theoretical calculation.
Scientific Reports,2016,6(1):21232
|
CSCD被引
2
次
|
|
|
|
5.
Chen D. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides(La_2O_3,Gd_2O_3,and Yb_2O_3) co-doped YSZ coatings.
Surface and Coatings Technology,2020,403:126387
|
CSCD被引
7
次
|
|
|
|
6.
Keyvani A. Synthesis and characterization of ( ( La_(1-x)Gd_x)_2Zr_2O_7;x = 0,0.1,0.2,0.3,0.4,0.5,1)nanoparticles for advanced TBCs.
Journal of the Australian Ceramic Society,2020,56:1543-1550
|
CSCD被引
1
次
|
|
|
|
7.
Song D. Hot-corrosion resistance and phase stability of Yb_2O_3-Gd_2O_3-Y_2O_3 costabilized zirconia-based thermal barrier coatings against Na_2SO_4+V_2O_5 molten salts.
Surface and Coatings Technology,2020,400:126197
|
CSCD被引
10
次
|
|
|
|
8.
Gul S R. Theoretical investigations of electronic and thermodynamic properties of Ce doped La_2Zr_2O_7 pyrochlore.
Materials Research Express,2019,6:085210
|
CSCD被引
2
次
|
|
|
|
9.
Heinze S G. Microstructure evolution and physical properties of ZrO_2-( Y+Yb) O_(1.5)-TaO_(2.5) thermal barrier coatings.
Surface and Coatings Technology,2020,389:125648
|
CSCD被引
1
次
|
|
|
|
10.
Wang J. Influence of Gd_2O_3 substitution on thermal and mechanical properties of ZrO_2-Ta_2O_5-Y_2O_3.
Journal of the European Ceramic Society,2020,41(2):1654-1663
|
CSCD被引
1
次
|
|
|
|
11.
Liu Q. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aeroengines.
Journal of Materials Science & Technology,2019,35(12):74-83
|
CSCD被引
1
次
|
|
|
|
12.
Doleker K M. Performance of single YSZ, Gd_2Zr_2O_7 and double-layered YSZ/Gd_2Zr_2O_7 thermal barrier coatings in isothermal oxidation test conditions.
Vacuum,2020,177:109401
|
CSCD被引
9
次
|
|
|
|
13.
Bahamirian M. ZrO_2 9.5Y_2O_3 5.6Yb_2O_3 5.2Gd_2O_3; a promising TBC material with high resistance to hot corrosion.
Journal of Asian Ceramic Societies,2020,8(3):1-11
|
CSCD被引
1
次
|
|
|
|
14.
Zhang J. Yb_2O_3-Gd_2O_3 codoped strontium zirconate composite ceramics for potential thermal barrier coating applications.
International Journal of Applied Ceramic Technology,2020,17:1608-1618
|
CSCD被引
1
次
|
|
|
|
15.
Keyvani A. Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling.
Journal of Alloys and Compounds,2017,727:1057-1066
|
CSCD被引
3
次
|
|
|
|
16.
Shukla V. Long-term conductivity stability of metastable tetragonal phases in 1Yb_2O_(3-x)Sc_2O_3-(99-x)ZrO_2(x = 7,8 mol %).
The Journal of Physical Chemistry C,2020,124(43):23490-23500
|
CSCD被引
1
次
|
|
|
|
17.
Shen Z. GdYbZrO thermal barrier coatings by EB-PVD: phase, microstructure, thermal properties and failure.
Surfaces and Interfaces,2021,24:101123
|
CSCD被引
2
次
|
|
|
|
18.
Shen Z. LaYbZrO thermal barrier coatings by EB-PVD: microstructure, thermal shock life and failure behaviors.
Materials Today Communications,2020,26:101810
|
CSCD被引
1
次
|
|
|
|
19.
Khan H. Variations in the thermal conductivity of La_2Zr_2O_7 and Gd_2Zr_2O_7 with variable La/Gd concentrations.
Physica B Condensed Matter,2021,614:413018
|
CSCD被引
2
次
|
|
|
|
20.
Zhou F. Fabrication and characterization of novel powder reconstitution derived nanostructured spherical La_2( Zr_(0.75)Ce_(0.25))_2O_7 feedstock for plasma spraying.
Applied Surface Science,2018,459:468-476
|
CSCD被引
1
次
|
|
|
|
|