帮助 关于我们

返回检索结果

基于时空图神经网络的手势识别
Spatial-Temporal Graph Neural Network based Hand Gesture Recognition

查看参考文献29篇

袁冠 1,2   邴睿 1   刘肖 1   代伟 3   张艳梅 1   蔡卓 1  
文摘 随着感知计算以及传感器集成技术的发展,使用各种传感设备实时捕捉的手势运动数据,为人机交互提供了新的驱动力,并被广泛地应用于智能家居、远程医疗、虚拟现实等领域.由于手势动作具有时序性与空间连接性,因此在手势识别中需要考虑手势空间连接关系和手势长距离依赖特性.然而现有的手势识别方法忽略了上述两种特性,导致识别精度不高.本文提出了基于时空图神经网络的手势识别算法,该方法从传感器空间分布角度出发,基于传感器的空间位置信息,借助图神经网络(Graph Neural Networks,GNN)对手势数据之间的空间关联性进行表征,并引入门控循环单元(Gated Recurrent Unit,GRU)解决手势的时序性和长距离依赖问题,增强手势识别性能.在多种数据集上的实验结果证明本文方法可行且有效.
其他语种文摘 With the development of perceptual computing and sensor integration technology, hand gesture motion data collected by various sensor devices provides a new data-driven way for human-computer interaction, and widely used in smart home, telemedicine, virtual reality and other fields. Due to hand gestures have temporality and spatial connectivity, it is necessary to consider spatial connection and long-distance dependence of hand gesture in gesture recognition. However, existing hand gesture recognition models ignore the aforementioned two problems, resulting in low recognition accuracy. Therefore, we propose a spatial-temporal graph neural network based hand gesture recognition model(STGNN-HGR). From the perspective of spatial distribution of sensors, based on the spatial location information of sensors, the model represents spatial correlation of hand gesture data with the help of graph neural networks(GNN), and introduces gated recurrent unit(GRU)to solve temporality and long-distance dependence in dynamic hand gestures, so as to enhance the performance of gesture recognition. The experimental results on a variety of datasets show that our model is feasible and effective.
来源 电子学报 ,2022,50(4):921-931 【核心库】
DOI 10.12263/DZXB.20211069
关键词 手势识别 ; 多传感器融合 ; 时空图神经网络 ; 循环神经网络
地址

1. 矿山数字化教育部工程研究中心, 矿山数字化教育部工程研究中心, 江苏, 徐州, 221116  

2. (徐州)中国矿业大学计算机科学与技术学院, 江苏, 徐州, 221116  

3. (徐州)中国矿业大学信息与控制工程学院, 江苏, 徐州, 221116

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  中国博士后科学基金
文献收藏号 CSCD:7190618

参考文献 共 29 共2页

1.  李艳德. 基于穿戴传感感知的手势识别模型与应用研究,2019 CSCD被引 1    
2.  王勇. 基于FMCW雷达的双流融合神经网络手势识别方法. 电子学报,2019,47(7):1408-1415 CSCD被引 10    
3.  冯志全. 结合手势二进制编码和类-Hausdorff距离的手势识别. 电子学报,2017,45(9):2281-2291 CSCD被引 3    
4.  Kim M. A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors,2017,17(5):1141-1158 CSCD被引 2    
5.  Li R Q. MHealth: A smartphone-controlled, wearable platform for tumour treatment. Materials Today,2020,40(11):91-100 CSCD被引 1    
6.  Ison M. High-density electromyography and motor skill learning for robust long-term control of a 7-DoF robot arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015,24(4):424-433 CSCD被引 2    
7.  Fang B. A novel data glove using inertial and magnetic sensors for motion capture and robotic arm-hand teleoperation. Industrial Robot: An International Journal,2017,44(2):155-165 CSCD被引 3    
8.  Chou P H. Development of a smart home system based on multi-sensor data fusion technology. Proceedings of IEEE International Conference on Applied System Innovation,2017:690-693 CSCD被引 1    
9.  Ma B. Combat gesture classification using through-the-wall radar based on multi-domain features association. Proceedings of IEEE Radar Conference,2020:1-5 CSCD被引 1    
10.  李愚. 基于增量自适应学习的在线肌电手势识别. 计算机科学,2019,46(4):274-279 CSCD被引 1    
11.  陈国良. 基于多特征HMM融合的复杂动态手势识别. 华中科技大学学报(自然科学版),2018,46(12):42-47 CSCD被引 2    
12.  Chen W. Hand gesture recognition using sEMG signals based on support vector machine. Proceedings of the 8th Joint International Information Technology and Artificial Intelligence Conference,2019:230-234 CSCD被引 1    
13.  Kumar P. Coupled HMMbased multi-sensor data fusion for sign language recognition. Pattern Recognition Letters,2017,86(1):1-8 CSCD被引 3    
14.  Purushothaman A. Development of smart home using gesture recognition for elderly and disabled. Journal of Computational and Theoretical Nanoscience,2020,17(1):177-181 CSCD被引 1    
15.  Chen L. Hand gesture recognition using compact CNN via surface electromyography signals. Sensors,2020,20(3):672-680 CSCD被引 7    
16.  Shin S. Skeleton-based dynamic hand gesture recognition using a part-based gru-rnn for gesturebased interface. IEEE Access,2020,8(3):50236-50243 CSCD被引 2    
17.  Chen Y. Graph convolutional network with structure pooling and joint-wise channel attention for action recognition. Pattern Recognition,2020,103(7):107321-103731 CSCD被引 2    
18.  Nunez J C. Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition. Pattern Recognition,2018,76(4):80-94 CSCD被引 15    
19.  Chen H. A hybrid cnn-svm classifier for hand gesture recognition with surface emg signals. Proceedings of the 17th International Conference on Machine Learning and Cybernetics,2018:619-624 CSCD被引 1    
20.  刘肖. 基于自适应多分类器融合的手势识别. 计算机科学,2020,47(7):103-110 CSCD被引 2    
引证文献 5

1 梁钊铭 视觉导引装配场景动态手势识别方法 机械设计与研究,2023,39(2):12-18
CSCD被引 1

2 李海林 时间序列复杂网络分析中的可视图方法研究综述 电子学报,2023,51(9):2598-2622
CSCD被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号