三维g-C_3N_4泡沫负载Cu(OH)_2纳米片的制备及其光催化还原CO_2性能
Preparation of 3Dg-C_3N_4 foam supported Cu(OH)_2 nanosheets for photocatalytic CO_2 reduction
查看参考文献30篇
文摘
|
为了改善g-C_3N_4光催化还原CO_2过程中的气体传质、吸附和光生电荷分离效率,分别从泡沫孔结构构筑和构建异质结两方面进行光催化材料设计。采用表面活性剂发泡法制备g-C_3N_4泡沫(g-C_3N_4Foam),以此为基体通过化学镀铜和氢氧化处理制备g-C_3N_4泡沫负载Cu(OH)_2纳米片(Cu(OH)_2/CNF)复合材料,对其结构和光催化性能进行分析。结果表明:g-C_3N_4Foam和Cu(OH)_2/CNF均展现出发达的三维微米孔网络结构,这种结构可从动力学层面优化CO_2在气-固催化反应中的传质和吸附,使CO_2吸附容量分别达到3.97cm~3/g和3.59cm~3/g,为g-C_3N_4粉末的2.96倍和2.68倍;同时,Cu(OH)_2/CNF样品中还形成大量二维Cu(OH)_2纳米片结构,不仅可以拓宽复合材料的光利用范围,还可通过g-C_3N_4/Cu(OH)_2异质结的构建促进光生电子向Cu(OH)_2表面转移,提升光生电荷分离效率;制备的Cu(OH)_2/CNF复合样品CO产率达到11.041μmol·g~(-1)·h~(-1),为g-C_3N_4Foam和g-C_3N_4粉末样品的2.76倍和6.83倍。 |
其他语种文摘
|
To optimize the gas transfer,adsorption and photo-generated charge separation in the process of photocatalytic CO_2 reduction by g-C_3N_4,the photocatalytic materials were designed from the aspects of foam pore structure and heterojunction construction.The typical g-C_3N_4 foam was first constructed using surfactant foaming method,and then Cu(OH)_2 nanosheets were loaded to prepare the Cu(OH)_2/CNF composites with projects of electroless copper plating and hydrogen oxidation treatment.The structure and photocatalytic properties of the as-prepared samples were investigated. The results show that g-C_3N_4 foam and Cu(OH)_2/CNF all demonstrate developed structures with 3D micron pore frameworks,which is conducive to improving CO_2 diffusion and adsorption at dynamics during gas-solid catalytic process.The adsorption amounts of CO_2 for g-C_3N_4 foam and Cu(OH)_2/CNF are respectively 3.97cm~3/g and 3.59cm~3/g,which are 2.96 times and 2.68 times respectively higher than that of pure g-C_3N_4 powder.Moreover,many Cu(OH)_2 nanosheets are also formed in the Cu(OH)_2/CNF samples which provide a way to simultaneously broaden light absorption and form heterojunction between g-C_3N_4 and Cu(OH)_2.This heterojunction can accelerate the separation of photo-generated e~——h~+and make photo-generated electrons transfer from g-C_3N_4 to Cu(OH)_2.As a result,the Cu(OH)_2/CNF has demonstrated optimal photocatalytic activity with CO production rate at 11.041μmol·g~(-1)·h~(-1),which is 2.76 times and 6.83 times respectively higher than that of g-C_3N_4 foam and g-C_3N_4 powder. |
来源
|
材料工程
,2023,51(4):141-150 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000120
|
关键词
|
g-C_3N_4泡沫
;
Cu(OH)_2纳米片
;
CO_2吸附
;
光生电荷分离
;
光催化还原CO_2
|
地址
|
武汉科技大学, 湖北省省部共建耐火材料与冶金国家重点实验室, 武汉, 430081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
化学 |
基金
|
国家自然科学基金
;
湖北省自然科学基金
;
湖北省教育厅项目
|
文献收藏号
|
CSCD:7480413
|
参考文献 共
30
共2页
|
1.
王海洋. 碳达峰、碳中和目标下中国核能发展路径分析.
中国电力,2021,54(6):86-94
|
CSCD被引
15
次
|
|
|
|
2.
Huang Z H. In suit inducing electron-donating and electron-withdrawing groups in carbon nitride by one-step NH_4Cl-assisted route:a strategy for high solar hydrogen production efficiency.
Environment International,2019,126:289-297
|
CSCD被引
3
次
|
|
|
|
3.
Bai X J. Photocatalytic activity enhanced via g-C_3N_4nanoplates to nanorods.
The Journal of Physical Chemistry C,2013,117(19):9952-9961
|
CSCD被引
45
次
|
|
|
|
4.
王亦清. 非金属掺杂石墨相氮化碳光催化的研究进展与展望.
物理化学学报,2020,36(3):106-119
|
CSCD被引
3
次
|
|
|
|
5.
葛玉杰. g-C_3N_4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展.
材料工程,2021,49(4):23-33
|
CSCD被引
3
次
|
|
|
|
6.
Wang X. A metal-free polymeric photocatalyst for hydrogen production from water under visible light.
Nature Materials,2009,8:76-80
|
CSCD被引
833
次
|
|
|
|
7.
Dong G. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light.
Journal of Materials Chemistry,2012,22(3):1160-1166
|
CSCD被引
43
次
|
|
|
|
8.
Zhang N. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis:exerting plasmonic effect and beyond.
Chem,2018,4(8):1832-1861
|
CSCD被引
12
次
|
|
|
|
9.
Ran J. Cocatalysts in semiconductorbased photocatalytic CO_2reduction:achievements,challenges,and opportunities.
Advanced Materials,2018,30(7):1704649
|
CSCD被引
115
次
|
|
|
|
10.
Chen Q. Co-MOF as an electron donor for promoting visible-light photoactivities of g-C_3N_4 nanosheets for CO_2 reduction.
Chinese Journal of Catalysis,2020,41(3):514-523
|
CSCD被引
29
次
|
|
|
|
11.
Wang Y L. A highly efficient Zscheme B-doped g-C_3N_4/SnS_2 photocatalyst for CO_2reduction reaction:a computational study.
Journal of Materials Chemistry A,2018,6(42):21056-21063
|
CSCD被引
14
次
|
|
|
|
12.
Lin Y R. Sulfur-doped g-C_3N_4nanosheets for photocatalysis:Z-scheme water splitting and decreased biofouling.
Journal of Colloid and Interface Science,2020,567:202-212
|
CSCD被引
11
次
|
|
|
|
13.
Wu J. CO_2reduction:from the electrochemical to photochemical approach.
Advanced Science,2017,4(11):1700194
|
CSCD被引
47
次
|
|
|
|
14.
Chen L. 3Dprinting of artificial leaf with tunable hierarchical porosity for CO_2photoreduction.
Chemistry of Materials,2018,30(3):799-806
|
CSCD被引
4
次
|
|
|
|
15.
She H D. Photocatalytic H_2production activity of TiO_2modified by inexpensive Cu(OH)2cocatalyst.
Journal of Alloys and Compounds,2019,821:153239
|
CSCD被引
1
次
|
|
|
|
16.
Chang P. 3Dstructural strengthening urchin-like Cu(OH)2-based symmetric supercapacitors with adjustable capacitance.
Advanced Functional Materials,2019,29(34):1903588
|
CSCD被引
3
次
|
|
|
|
17.
Li F. Nanosheet-assembled hierarchical flower-like g-C_3N_4 for enhanced photocatalytic CO_2reduction activity.
Chemical Communications,2020,56(16):2443-2446
|
CSCD被引
12
次
|
|
|
|
18.
Akhavan O. CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts.
Journal of Materials Chemistry,2011,21(26):9634-9640
|
CSCD被引
13
次
|
|
|
|
19.
Du X. Synthesis and properties of multilayered films foams.
Colloids &Surfaces:A,2013,436(35):599-603
|
CSCD被引
3
次
|
|
|
|
20.
Che H. Nitrogen doped carbon ribbons modified g-C_3N_4 for markedly enhanced photocatalytic H_2-production in visible to near-infrared region.
Chemical Engineering Journal,2020,382:122870
|
CSCD被引
7
次
|
|
|
|
|