水溶液B(OH)_3和B(OH)_4~-间硼同位素平衡分馏参数的理论计算
Theoretical Calculation of Boron Isotope Fractionation Between B(OH)_3 and B(OH)_4~- in Aqueous Solution
查看参考文献31篇
文摘
|
采用密度泛函方法计算了水溶液中B(OH)_3和B(OH)_4~-间硼同位素的平衡分馏参数。在模拟液相环境时,采用基于分子簇模型的"水滴"法,分别以6、12、18、24和30个水分子环绕兴趣分子的方式构建"水滴"。对纯水体系的计算结果显示该分馏参数在25°C时为1.031,与实验测定值吻合地非常理想。对不同个数水分子所形成的液相构型进行比较,发现在计算硼同位素的分馏时,12个水分子的"水滴"构型是比较经济和准确的建模方式。此外,我们还讨论了前人对该体系分馏计算中存在的不足,并提出了将分子簇模型扩展到碳酸盐矿物形成过程中硼同位素分馏研究的可能。 |
其他语种文摘
|
Density functional calculation is used to estimate isotope fractionation factor between B(OH)_3 and B(OH)_4~- in aqueous solution. A "Water-droplet" configuration based on molecular cluster model was chosen for simulating the aqueous environment where every "water-droplet" contains n?H_2O molecules (n=6, 12, 18, 24, 30) surrounding the molecule of interest. Our theoretical results show equilibrium isotope fractionation of boron isotope exchange between B(OH)_3 and B(OH)_4~- is equal to 1.031 in pure water at 25℃, which is in good agreement with experimental observation. Comparison of several configurations containing different number of H_2O molecules shows that the 12-molecule water cluster is an economic and accurate model for predicting boron isotope fractionation. Moreover, we discuss a defect in previous study of calculation of the boron isotope fractionation factor and suggest a possibility of using the cluster model in future investigation of boron isotope fractionation during carbonate formations. |
来源
|
矿物学报
,2014,34(4):535-541 【核心库】
|
关键词
|
硼同位素
;
平衡分馏参数
;
量子化学计算
;
水溶液
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
贵州民族大学, 贵州, 贵阳, 550025
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
贵州省项目
;
贵州民族大学引进人才科研项目
;
中国科学院西部之光人才培养计划
|
文献收藏号
|
CSCD:5251975
|
参考文献 共
31
共2页
|
1.
Hemming N G. Boron isotopic composition and concentration in modern marine carbonates.
Geochimca et Cosmochimca Acta,1992,56:537-543
|
CSCD被引
71
次
|
|
|
|
2.
Kakihana H. Equilibrium constants for boron isotope-exchange reactions.
Bulletin of the Research Laboratory for Nuclear Reactors,1977,2:1-12
|
CSCD被引
3
次
|
|
|
|
3.
Vengosh A. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates.
Geochimca et Cosmochimca Acta,1991,55:2901-2910
|
CSCD被引
29
次
|
|
|
|
4.
Spivack S D. Synthesis of 3-arylmuconolactones using biphenyl metabolism aspergillus.
Nature,1993,49:A344-A344
|
CSCD被引
2
次
|
|
|
|
5.
Sanyal A. Evidence for a higher pH in the glacial ocean form boron isotopes in foraminifera.
Nature,2001,373:234-236
|
CSCD被引
2
次
|
|
|
|
6.
Pearson P N. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations.
Science,1999,284:1834-1836
|
CSCD被引
23
次
|
|
|
|
7.
Pagani M. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates.
Geochimca et Cosmochimca Acta,2005,69:953-961
|
CSCD被引
27
次
|
|
|
|
8.
Zeebe R E. A theoretical study of the kinetics of the boric acid-borate equilibrium in seawater.
Marine Chemistry,2001,73:113-124
|
CSCD被引
2
次
|
|
|
|
9.
Liu Y. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates.
Geochimca et Cosmochimca Acta,2005,69:3995-4006
|
CSCD被引
27
次
|
|
|
|
10.
Zeebe R E. Stable boron isotope fractionation between dissolved B(OH)_3 and B(OH)_4~-.
Geochimca et Cosmochimca Acta,2005,69:2753-2766
|
CSCD被引
16
次
|
|
|
|
11.
Klochko K. Experimental measurement of boron isotope fractionation in seawater.
Earth and Planetary Science Letters,2006,248:276-285
|
CSCD被引
25
次
|
|
|
|
12.
Rustad J R. Calculation of boron-isotope fractination between B(OH)_3(aq) and B(OH)_4~-(aq).
Geochimca et Cosmochimca Acta,2010,74:2843-2850
|
CSCD被引
5
次
|
|
|
|
13.
Urey H C. Some thermodynamic properties of the H~1H~2, H~2H~2 molecules and compounds containing the H_2 atom.
The Journal of Chemical Physics,1933,1:137-143
|
CSCD被引
7
次
|
|
|
|
14.
Bigeleisen J. Calculation of equilibrium constants for isotopic exchange reactions.
The Journal of Chemical Physics,1947,15:261-267
|
CSCD被引
63
次
|
|
|
|
15.
Urey H C. The thermodynamic properties of isotopic substances.
Journal of the Chemical Society of London,1947:562-581
|
CSCD被引
3
次
|
|
|
|
16.
Wolfsberg M. Theoretical evaluation of experimentally observed isotope effects.
Accounts of Chemical Research,1972,5:225-233
|
CSCD被引
2
次
|
|
|
|
17.
Schauble E A. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics.
Geochimca et Cosmochimca Acta,2006,70:2510-2529
|
CSCD被引
30
次
|
|
|
|
18.
Rustad J R. Calculation of site-specific carbon-isotope fractionation in pedogenic oxide minerals.
Proceedings of the National Academy of Sciences of the United States of America,2008,105:10297-10301
|
CSCD被引
6
次
|
|
|
|
19.
Li X. Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications.
Earth and Planetary Science Letters,2009,287:1-11
|
CSCD被引
5
次
|
|
|
|
20.
Liu Q. On the proper use of the Bigeleisen-Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants.
Geochimica et Cosmochimica Acta,2010,74:6965-6983
|
CSCD被引
10
次
|
|
|
|
|