多孔钽植入物在骨缺损中的应用进展
Research progress in application of porous tantalum implant for treatment of bone defects
查看参考文献86篇
文摘
|
多孔金属钽具有良好的生物相容性与骨传导能力,相比于传统的金属植入物材料有较低的弹性模量与高的摩擦因数,可以避免发生应力遮挡效应且具有与人类松质骨类似的多孔结构。多孔钽的力学性能优势与优秀的生物学性能,在骨修复材料领域受到越来越多的关注,且已研发并应用于多种部位的骨缺损修复中。随着多孔钽材料制备方法的更新与多种改性方法的提出,多孔钽进一步展示了在临床应用中的广阔前景。本文从多孔钽材料的制备工艺、细胞毒性、与骨结合特性以及目前在临床的应用情况等方面,介绍多孔钽植入物在骨缺损中的应用进展,并提出了多孔钽在表面改性建立复合体系、优化制备工艺及个性化制备技术的发展方向,为多孔钽植入物在治疗骨缺损的临床应用提供参考。 |
其他语种文摘
|
Porous tantalum metal has good biocompatibility and osteoconductivity,with a lower modulus of elasticity and a higher coefficient of friction to avoid stress-shielding compared with traditional implant metal materials. In addition, its porous structure, similar to that of human cancellous bone. Porous tantalum has received increasing attention in recent years due to its advantages in mechanical properties and excellent biological properties,and has been developed and applied in the treatment of various bone defects. With the progress of the preparation methods of porous tantalum materials and the proposal of various modification methods,the prosperity of porous tantalum in clinical applications has been further demonstrated. In this paper, the application of porous tantalum implant in bone defects treatment was reviewed, considering its preparation technology,cytotoxicity,osseointegration properties, and current clinical applications. Furthermore, the developments of porous tantalum including surface modification for establishing composite systems, optimization of preparation processes and personalized preparation techniques are expected to facilitate the clinical application of porous tantalum implants in the treatment of bone defects. |
来源
|
材料工程
,2022,50(11):1-13 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001151
|
关键词
|
多孔钽
;
骨缺损
;
骨植入物
;
临床应用
|
地址
|
1.
上海交通大学生物医学工程学院, 上海, 200030
2.
上海交通大学医学院附属第九人民医院骨科, 上海, 200011
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
基础医学 |
基金
|
上海市浦江人才计划项目
;
上海交通大学医工交叉青年项目
|
文献收藏号
|
CSCD:7398754
|
参考文献 共
86
共5页
|
1.
Wang X. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review.
Biomaterials,2016,83:127-141
|
CSCD被引
131
次
|
|
|
|
2.
Koettstorfer J. Successful limb salvage using the two-staged technique with internal fixation after osteodistraction in an effort to treat large segmental bone defects in the lower extremity.
Archives of Orthopaedic and Trauma Surgery,2012,132(10):1399-1405
|
CSCD被引
2
次
|
|
|
|
3.
Starch-Jensen T. Harvesting of autogenous bone graft from the ascending mandibular ramus compared with the chin region: a systematic review and meta-analysis focusing on complications and donor site morbidity.
Journal of Oral and Maxillofacial Research,2020,11(3):e1
|
CSCD被引
1
次
|
|
|
|
4.
Yeap M C. Long-term complications of cranioplasty using stored autologous bone graft, three-dimensional polymethyl methacrylate, or titanium mesh after decompressive craniectomy: a single-center experience after 596 procedures.
World Neurosurgery,2019,128:e841-e850
|
CSCD被引
5
次
|
|
|
|
5.
张宇. 自体膝关节骨软骨移植治疗距骨骨软骨损伤临床疗效分析.
中国骨与关节损伤杂志,2019,34(8):885-887
|
CSCD被引
1
次
|
|
|
|
6.
Long M. Titanium alloys in total joint replacement-a materials science perspective.
Biomaterials,1998,19(18):1621-1639
|
CSCD被引
231
次
|
|
|
|
7.
Sagomonyants K B. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients.
Journal of Orthopaedic Research,2011,29(4):609-616
|
CSCD被引
16
次
|
|
|
|
8.
Li Y. Cytotoxicity of titanium and titanium alloying elements.
Journal of Dental Research,2010,89(5):493-497
|
CSCD被引
9
次
|
|
|
|
9.
Sicilia A. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients.
Clinical Oral Implants Research,2008,19(8):823-835
|
CSCD被引
7
次
|
|
|
|
10.
Tarentino A L. A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from streptomyces griseus and diplococcus pneumoniae.
Biochemical and Biophysical Research Communications,1975,67(1):455-462
|
CSCD被引
1
次
|
|
|
|
11.
Hefni E K. Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients.
BDJ Open,2018,4(1):1-10
|
CSCD被引
1
次
|
|
|
|
12.
Balla V K. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties.
Acta Biomaterialia,2010,6(8):3349-3359
|
CSCD被引
63
次
|
|
|
|
13.
Roy M. MgO doped tantalum coating on Ti: microstructural study and biocompatibility evaluation.
ACS Applied Materials & Interfaces,2012,4(2):577-580
|
CSCD被引
2
次
|
|
|
|
14.
Han Q. Porous tantalum and titanium in orthopedics: a review.
ACS Biomaterials Science & Engineering,2019,5(11):5798-5824
|
CSCD被引
14
次
|
|
|
|
15.
Burke G L. The corrosion of metals in tissues; and an introduction to tantalum.
Canadian Medical Association Journal,1940,43(2):125-128
|
CSCD被引
5
次
|
|
|
|
16.
Woodhall B. Tantalum cranioplasty for war wounds of the skull.
Annals of Surgery,1945,121(5):649-668
|
CSCD被引
2
次
|
|
|
|
17.
Weiss E W. Tantalum tubes in the non-suture method of blood vessel anastomosis.
The American Journal of Surgery,1950,80(4):452-454
|
CSCD被引
2
次
|
|
|
|
18.
Koontz A R. Preliminary report on the use of tantalum mesh in the repair of ventral hernias.
Annals of Surgery,1948,127(5):1079-1085
|
CSCD被引
1
次
|
|
|
|
19.
Norcross N C. Observations on the use of tantalum foil in peripheral nerve surgery.
Journal of Neurosurgery,1947,4(1):69-71
|
CSCD被引
1
次
|
|
|
|
20.
Harris H E. The use of tantalum tubes in frontal sinus surgery.
Cleveland Clinic Quarterly,1948,15(3):129-133
|
CSCD被引
1
次
|
|
|
|
|