运用原位衰减全反射红外光谱法研究铬磁铁矿对磷酸根的吸附作用
An in Situ ATR-FTIR Study on Adsorption of Phosphate by Chromate Doped Magnetite
查看参考文献25篇
文摘
|
采用原位衰减全反射红外光谱技术(ATR-FTIR)探讨pH值和磷酸根浓度对磷酸根在磁铁矿表面吸附形态的影响。结果表明:随着pH值降低,磷酸根浓度增大,磷酸根在磁铁矿表面的吸附量随之增加,形成内层吸附。发现有3种吸附模型:①在低pH值时,主要形成对称性为C_1的吸附形态,可能主要是单质子化双齿双核络合形态;②在高pH值条件下发现有2种形态,高磷酸根浓度条件下,形成1种对称性为C_(3v)吸附形态,主要是单齿单核络合形态,在低浓度条件下,发现1种C_(2v)对称性吸附形态,可能是去质子化双齿双核络合形态,与单齿单核络合形态的物种在低浓度条件下共同存在。 |
其他语种文摘
|
Phosphate adsorption on Cr-doped magnetite was characterized as the function of pH and phosphate concentration by in situ ATR-FTIR spectroscopy. The aim of this study is to investigate adsorption morphology of phosphate the variation medium condition. Results indicate that three inner-sphere complexes formed. At lower pH,monoprotonated bidentate-binuclear complex is dominated, while the monodentate mononuclear species are predomionated at higher pH and the nonprotonated and bidentate binonuclear species are also existing at higher and lower loadings. |
来源
|
矿物学报
,2017,37(1/2):188-195 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2017.01.023
|
关键词
|
磁铁矿
;
吸附
;
磷酸根
;
衰减全反射红外光谱
|
地址
|
1.
华南师范大学物理与电信工程学院, 中国科学院矿物学与成矿学重点实验室;;广东省矿物物理与材料开发研究重点实验室, 广东, 广州, 510006
2.
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室;;广东省矿物物理与材料开发研究重点实验室, 广东, 广州, 510640
3.
华南师范大学物理与电信工程学院, 广东, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学;环境污染及其防治 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5986921
|
参考文献 共
25
共2页
|
1.
Williams A G B. Spectroscopic evidence for Fe (Ⅱ) - Fe (Ⅲ) electron transfer at the iron oxide-water interface.
Environmental Science & Technology,2004,38(18):4782-4790
|
CSCD被引
19
次
|
|
|
|
2.
Liang X L. The remarkable effect of vanadium doping on the adsorption and catalytic activity of magnetite in the decolorization of methylene blue.
Applied Catalysis B: Environmental,2010,97(1/2):151-159
|
CSCD被引
8
次
|
|
|
|
3.
Liang X L. The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: In interfacial view.
Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,435:28-35
|
CSCD被引
5
次
|
|
|
|
4.
Yang S J. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe_(3-x)Ti_xO_4(0≤ x≤0.78) at neutral pH values.
Applied Catalysis B: Environmental,2009,89(3/4):527-535
|
CSCD被引
16
次
|
|
|
|
5.
Liang X L. The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes.
Chemical Engineering Journal,2012,191:177-184
|
CSCD被引
10
次
|
|
|
|
6.
Kendelewicz T. X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI)on single crystal hematite and magnetite surfaces.
Surface Science,1999,424(2/3):219-231
|
CSCD被引
1
次
|
|
|
|
7.
Paulino A T. Effect of magnetite on the adsorption behavior of Pb(Ⅱ), Cd(Ⅱ),and Cu(Ⅱ)in chitosan-based hydrogels.
Desalination,2011,275(1/3):187-196
|
CSCD被引
11
次
|
|
|
|
8.
Wu R C. Removal of azo dye from water by magnetite adsorption-Fenton oxidation.
Water Environment Research,2004,76(7):2637-2642
|
CSCD被引
2
次
|
|
|
|
9.
Sagert N H. The adsorption of uranium(VI) onto a magnetite sol.
Journal of Colloid and Interface Science,1989,130(1):283-287
|
CSCD被引
1
次
|
|
|
|
10.
Missana T. Selenite retention by nanocrystalline magnetite: Role of adsorption, reduction and dissolution/co-precipitation processes.
Geochimica et Cosmochimica Acta,2009,73(20):6205-6217
|
CSCD被引
6
次
|
|
|
|
11.
Stephen Inbaraj B. Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly (γ-glutamic acid).
Bioresource Technology,2011,102(19):8868-8876
|
CSCD被引
3
次
|
|
|
|
12.
Zhang D. Strong adsorption of chlorotetracycline on magnetite nanoparticles.
Journal of Hazardous Materials,2011,192(3):1088-1093
|
CSCD被引
14
次
|
|
|
|
13.
Vieira A P. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mossbauer,EPR spectroscopy and X-ray diffractometry studies.
Amino Acids,2011,40(1):205-214
|
CSCD被引
2
次
|
|
|
|
14.
Xue X F. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations.
Applied Catalysis B: Environmental,2009,89(3/4):432-440
|
CSCD被引
19
次
|
|
|
|
15.
Scott T B. Reduction of U(VI) to U(IV) on the surface of magnetite.
Geochimica et Cosmochimica Acta,2005,69(24):5639-5646
|
CSCD被引
8
次
|
|
|
|
16.
Conley D J. Controlling eutrophication: Nitrogen and phosphorus.
Science,2009,323(5917):1014-1015
|
CSCD被引
370
次
|
|
|
|
17.
吴萍萍. 离子强度和磷酸盐对铁铝矿物及土壤吸附As(V)的影响.
农业环境科学学报,2012,31(3):498-503
|
CSCD被引
18
次
|
|
|
|
18.
Li Z W. Influence of different phosphates on adsorption and leaching of Cu and Zn in red soil.
Transactions of Nonferrous Metals Society of China,2016,26(2):536-543
|
CSCD被引
3
次
|
|
|
|
19.
Lefevre G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides.
Advances in Colloid and Interface Science,2004,107(2/3):109-123
|
CSCD被引
15
次
|
|
|
|
20.
翁诗甫.
傅里叶变换红外光谱分析. (第2版),2010:1-389
|
CSCD被引
2
次
|
|
|
|
|