南海珊瑚礁高分辨率遥感地貌分类体系研究
Development of a geomorphic classification scheme for coral reefs in the South China Sea based on high-resolution satellite images
查看参考文献44篇
文摘
|
珊瑚礁遥感地貌分类体系在珊瑚礁遥感地貌制图中具有重要的指导作用。目前,珊瑚礁遥感地貌分类体系仍存在构建标准不统一、部分重要地貌类型不突出以及涵盖地貌类型不完备等问题,影响了珊瑚礁遥感地貌制图应用于珊瑚礁科学和管理。本文采用中国南海46个珊瑚礁(环礁、台礁)的高分辨率遥感影像(WorldView-2、Quickbird),并结合西沙群岛15个岛礁的地貌实地调查数据进行南海高分辨率遥感地貌分类体系的构建研究。以各地貌类型所处礁体位置、动力特征、出露程度和沉积类型为划分标准,将相似尺度和重要性相当的地貌类型归为同等级别,共构建了3级19类南海珊瑚礁遥感地貌分类体系。该分类体系划分标准统一、地貌类型数量最多且完备,新命名了内礁坪生物稀疏带、内礁坪生物丛生带,补充了水下礁脊、潮间带浅滩、浅水礁塘等地貌类型,便于直观理解和推断不同尺度的海洋生态相互作用及重要性。同时,其多等级多尺度性适用于分辨率由低到高的南海珊瑚礁遥感地貌制图,有助于珊瑚礁态势演变分析、管理和保护,为维护国家海洋权益作出应有的贡献。 |
其他语种文摘
|
Coral reef geomorphic classification scheme plays an important role in coral reef geomorphic mapping based on remote sensing images. At present, there are various problems in the coral reef geomorphic classification schemes for remote sensing, such as inconsistent construction standards, unreasonable levels of some important geomorphic types, and incomplete geomorphic type coverage, which limit the application of geomorphic mapping for coral reef science and management. This articel advocates a systematic and hierarchical geomorphic classification scheme for reefs in the South China Sea for remote sensing, which concludes three levels and 19 classes from the sea to the lagoon or island. It is constructed based on high-resolution satellite images (WorldView-2, Quickbird) of 46 reefs (atolls, table reefs) and field survey data of 15 reefs in the Xisha Islands. Geomorphic types are derived and described according to the criteria of reef location, hydrodynamic characteristics, exposure degree and sediments. Geomorphic types are placed at the same level when they possess similar scale and importance. Cay and island are placed in the first level to show their importance. The scheme has consistent standardization, the highest hierarchical structure, and the largest number of geomorphic types. In the scheme, biotic sparse zone of the inner reef flat, biotic dense zone of the inner reef flat are named; submerged reef ridge, intertidal sand zone, and shallow reef pond are supplemented. The classification scheme facilitates the intuitive understanding and inference of the processes and importance of marine ecological interaction across different scales. This hierarchical geomorphic classification scheme with multi-scale characteristic is applicable to the coral reef geomorphic mapping from low-resolution to high-resolution satellite images, contributing to the change analysis, management, and protection of China's coral reefs in the South China Sea. |
来源
|
地理科学进展
,2018,37(11):1463-1472 【核心库】
|
DOI
|
10.18306/dlkxjz.2018.11.003
|
关键词
|
遥感
;
高分辨率
;
珊瑚礁
;
地貌
;
分类体系
;
南海
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
广西南海珊瑚礁研究重点实验室, 广西南海珊瑚礁研究重点实验室, 南宁, 530004
3.
广西大学海洋学院, 南宁, 530004
4.
中国科学院南海海洋研究所, 中国科学院边缘海与大洋地质重点实验室, 广州, 510301
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
海洋学 |
基金
|
中国科学院战略性先导科技专项
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:6401421
|
参考文献 共
44
共3页
|
1.
龚剑明. 面向对象的南海珊瑚礁地貌单元提取.
地球信息科学学报,2014,16(6):997-1004
|
CSCD被引
14
次
|
|
|
|
2.
纳乌莫夫ДВ. 海南岛珊瑚礁的主要类型.
海洋与湖沼,1960,3(3):157-178
|
CSCD被引
1
次
|
|
|
|
3.
孙宗勋. 南沙群岛珊瑚礁动力地貌特征.
热带海洋,1996,15(2):53-60
|
CSCD被引
14
次
|
|
|
|
4.
王黎. 九章环礁水下暗礁脊槽地貌分布与形态.
第四纪研究,2018,38(2):485-495
|
CSCD被引
5
次
|
|
|
|
5.
曾昭璇. 中国环礁的类型划分.
海洋通报,1982(4):46-53
|
CSCD被引
2
次
|
|
|
|
6.
赵焕庭.
南沙群岛自然地理,1996
|
CSCD被引
15
次
|
|
|
|
7.
赵焕庭. 南沙群岛"危险地带"腹地珊瑚礁的地貌与现代沉积特征.
第四纪研究,1992,12(4):368-377
|
CSCD被引
16
次
|
|
|
|
8.
赵焕庭. 南沙群岛珊瑚礁自然特征.
海洋学报,1996,18(5):61-70
|
CSCD被引
18
次
|
|
|
|
9.
赵美霞. 珊瑚岛的动态演变及其稳定性研究综述.
热带地理,2017,37(5):694-700
|
CSCD被引
3
次
|
|
|
|
10.
周旻曦. 多目标珊瑚岛礁地貌遥感信息提取方法——以西沙永乐环礁为例.
地理研究,2015,34(4):677-690
|
CSCD被引
16
次
|
|
|
|
11.
朱海天. 基于随机森林的南沙岛礁分类方法研究.
中国海洋学会2015年学术论文集,2015:99-104
|
CSCD被引
1
次
|
|
|
|
12.
Ahmad W. An evaluation of Landsat Thematic Mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR).
International Journal of Remote Sensing,1994,15(13):2583-2597
|
CSCD被引
3
次
|
|
|
|
13.
Andrefouet S. Coral reef distribution, status and geomorphology-biodiversity relationship in Kuna Yala(San Blas) archipelago, Caribbean Panama.
Coral Reefs,2005,24(1):31-42
|
CSCD被引
3
次
|
|
|
|
14.
Andrefouet S. Multisite evaluation of IKONOS data for classification of tropical coral reef environments.
Remote Sensing of Environment,2003,88(1):128-143
|
CSCD被引
9
次
|
|
|
|
15.
Andrefouet S. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space.
2004. Proceedings of 10th international coral reef symposium,2006:1732-1745
|
CSCD被引
1
次
|
|
|
|
16.
Andrefouet S. Mapping and biomass estimation of the invasive brown algae Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data.
Coral Reefs,2004,23(1):26-38
|
CSCD被引
2
次
|
|
|
|
17.
Franklin E C. Benthic habitat mapping in the Tortugas Region, Florida.
Marine Geodesy,2003,26(1/2):19-34
|
CSCD被引
1
次
|
|
|
|
18.
Fuentes M. Vulnerability of sea turtle nesting grounds to climate change.
Global Change Biology,2011,17(1):140-153
|
CSCD被引
1
次
|
|
|
|
19.
Goldberg W M. The ecology of the coral-octocoral communities off the southeast Florida coast: Geomorphology, species composition, and zonation.
Bulletin of Marine Science,1973,23(3):465-488
|
CSCD被引
1
次
|
|
|
|
20.
Goreau T F. The ecology of Jamaican coral reefs I. Species composition and zonation.
Ecology,1959,40(1):67-90
|
CSCD被引
6
次
|
|
|
|
|