帮助 关于我们

返回检索结果

PEMFC气体扩散层内PTFE含量及分布对气液两相流影响的LBM研究
Impact of PTFE Content and Distribution on Liquid-Gas Flow in PEMFC Gas Distribution Layer: 3D Lattice Boltzmann Simulations

查看参考文献51篇

陈旺   蒋方明 *  
文摘 基于数值重建的碳纸气体扩散层(GDL)三维微结构,采用格子玻尔兹曼方法(LBM)模拟了质子交换膜燃料电池(PEMFC)GDL内的气液两相流,详细研究了聚四氟乙烯(PTFE)含量及分布对GDL内两相输运的影响。计算结果发现:PTFE非均匀分布(靠近气流通道侧含量更多)时GDL内更容易积水;PTFE含量较多时GDL内积累的液态水含量较少。基于计算结果推导了气液两相相对渗透率,分析发现:PTFE含量及分布对气相相对渗透率影响较小;液相饱和度小于0.8时,PTFE含量较低时液相相对渗透率较高,而当液相饱和度大于0.8时,PTFE含量较高时液相相对渗透率较高;与PTFE非均匀分布时相比,PTFE均匀分布时液相相对渗透率较高。
其他语种文摘 The lattice Boltzmann method is employed to simulate the liquid-gas flow in the gas diffusion layer (GDL) in proton exchange membrane fuel cell (PEMFC). Based on the computer generated 3 dimensional GDL, the impact of polytetrafluoroethylene (PTFE) content and distribution on liquid-gas flow in GDL is studied in detail. The results show liquid water is easier to be stuck and to accumulate inside the GDL when PTFE is non-uniformly distributedin the GDL (i.e.,withmore PTFE neighboring to the GC); the liquid saturation diminishes with the increase of PTFE content in GDL when PTFE is uniformly distributed. Based on the resultsof simulated two-phase flow, the relative permeability (Kr) of each phase is derived at different phase saturations.The gas relative permeability (Krg) is less influenced by the PTFE content and distribution comparing to the liquid relative permeability (Kr1);the Kr1 is larger in the GDL of lower PTFE content when the liquid saturation is lower than 0.8, but when the liquid saturation is higher than 0.8, it is smaller compared with that in the GDL with higher PTFE content; in addition, the Kr1 is lager in the GDL with PTFE uniformly distributed.
来源 工程热物理学报 ,2016,37(7):1475-1483 【核心库】
关键词 质子交换膜燃料电池 ; 气体扩散层 ; 格子玻尔兹曼方法 ; 聚四氟乙烯,两相流
地址

广州能源研究所先进能源系统实验室, 中国科学院可再生能源重点实验室, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0253-231X
学科 能源与动力工程;电工技术
基金 广东省自然科学基金重大基础培育项目 ;  广东省广州市科技计划项目
文献收藏号 CSCD:5743372

参考文献 共 51 共3页

1.  Pasaogullari U. Liquid water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society,2004,151(3):399-406 被引 5    
2.  Wang С Y. Fundamental Models for Fuel Cell Engineering. Chemical Society Reviews,2004,104(10):4727-4766 被引 1    
3.  Jiang F M. Numerical Modeling of Liquid Water Motion in a Polymer Electrolyte Fuel Cell. International Journal of Hydrogen Energy,2014,39(2):942-950 被引 3    
4.  He W. Two-Phase flow Model of the Cathode of РЕМ Fuel Cells Using Interdigitated Flow Field. American Institute of Chemical Engineers,2000,46(10):2053-2064 被引 1    
5.  Natarajan D. A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors. Journal of the Electrochemical Society,2001,148(12):1324-1335 被引 27    
6.  Wu H. On the Modeling of Water Transport in Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta,2009,54(27):6913-6927 被引 8    
7.  Hirt С W. Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics,1981,39(1):201-225 被引 1084    
8.  Theodorakakos A. Dynamics of Water Droplets Detached from Porous Surfaces of Relevance to РЕМ Fuel Cells. Journal of Colloid and Interface Science,2006,300(2):673-687 被引 6    
9.  Zhu X. Three-Dimensional Numerical Simulations of Water Droplet Dynamics in a PEMFC Gas Channel. Journal of Power Sources,2008,181(1):101-115 被引 14    
10.  Park J W. Numerical Investigations on Liquid Water Removal from the Porous Gas Diffusion Layer by Reactant Flow. Applied Energy,2010,87(7):2180-2186 被引 2    
11.  Aimy B. Dynamic Water Transport and Droplet Emergence in PEMFC Gas Diffusion Layers. Journal of Power Sources,2008,176(1):2180-2186 被引 7    
12.  Mohamed E A. Numerical Simulation of Droplet Dynamics in a Proton Exchange Membrane (PEMFC) Fuel Cell Micro-Channel. International Journal of Hydrogen Energy,2015,40(2):1333-1342 被引 1    
13.  Park J. Multi-Phase Micro-Scale Flow Simulation in the Electrodes of a РЕМ Fuel Cell by Lattice Boltzmann Method. Journal of Power Sources,2008,178(1):248-257 被引 3    
14.  Gao Y. Lattice Boltzmann Simulation of Water and Gas Flow in Porous Gas Diffusion Layers in Fuel Cells Reconstructed from Micro-Tomography. Computers and Mathematics With Applications,2013,65(6):891-900 被引 1    
15.  Chen L. Numerical Investigation of Liquid Water Transport and Distribution in Porous Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell Using Lattice Boltzmann Method. Russian Journal of Electrochemistry,2012,48(7):712-726 被引 3    
16.  Bevers D. Examination of the Influence of PTFE Coating on the Properties of Carbon Paper in Polymer Electrolyte Fuel Cells. Journal of Power Source,1998,63(2):193-201 被引 6    
17.  Lin G Y. Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Electrode Flooding Level in a PEMFC. Journal of the Electrochemical Society,2005,152(10):1942-1948 被引 2    
18.  Paganin V A. Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells. Journal of Applied Electrochenistry,1996,26(3):297-304 被引 17    
19.  Lim С. Effects of Hydrophobic Polymer Content in GDL on Power Performance of a РЕМ Fuel Cell. Electrochimica, Acta,2004,49(24):4149-4156 被引 1    
20.  Lee C. Gas Diffusion Layer Durability Under Steady-State and Freezing Conditions. Journal of Power Sources,2007,164(1):141-153 被引 5    
引证文献 1

1 宇高义郎 质子交换膜燃料电池内含水气体扩散层的冻结特性研究 化工学报,2021,72(4):2276-2282
被引 4

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号