基于滑动窗迭代最大后验估计的多源组合导航因子图融合算法
Multi-source Integrated Navigation Algorithm for Iterated Maximum Posteriori Estimation Based on Sliding-window Factor Graph
查看参考文献22篇
文摘
|
在应用因子图算法完成多源组合导航数据融合的过程中,子系统观测噪声的时变特性将对导航状态估计的准确性产生极大影响。为解决这一问题,提出一种基于高斯模型下的子系统观测量均值向量和协方差矩阵的估计算法。该算法利用因子图最优化过程中每个迭代周期下的观测量残差,实时地更新各个子系统观测量的均值向量和协方差矩阵的最大后验估计值,从而得到更加准确的导航状态估计值,在提出新算法的同时也验证了新算法对最优化过程收敛性的影响。仿真测试与实验测试结果表明,与已有的标准因子图算法、基于最大似然估计的因子图算法和基于最大后验估计的因子图算法相比,所提出的基于迭代最大后验估计的因子图算法能够有效提高子系统观测状态变化时的多源组合导航估计精度。 |
其他语种文摘
|
In the process of data fusion in multi-source integrated navigation using factor graph, the time-varying characteristics of the subsystem's observed noise have a great influence on the estimation accuracy of navigation state. In order to solve the problem, a Gaussian model-based method to estimate the mean vector and covariance matrix of sub-system observation is proposed. In the proposed method, the observed-measurement residuals for each iterative cycle in the process of factor graph optimization are utilized to update the maximum posteriori estimated values of mean vectors and covariance matrices. A more accurate estimated value of navigation state can be obtained by estimating the sub-system noise state. The influence of the new algorithm on the convergence of optimization process was also deduced. Both the simulated and experimental results show that, compared with the existing algorithms as factor graph, maximum likelihood estimation based factor graph and maximum posteriori based factor graph, the proposed factor graph method based on iterative maximum posteriori estimation can effectively improve the accuracy of navigation estimation when the subsystem observing state varies. |
来源
|
兵工学报
,2019,40(4):807-819 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2019.04.016
|
关键词
|
多源组合导航
;
信息融合
;
因子图
;
惯性导航系统
;
全球卫星导航系统
;
超宽带导航系统
|
地址
|
1.
西北工业大学电子信息学院, 陕西, 西安, 710072
2.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6483519
|
参考文献 共
22
共2页
|
1.
Li Z. An approach to improve the positioning performance of GPS/INS/UWB integrated system with two-step filter.
Remote Sensing,2017,10(1):19-34
|
CSCD被引
6
次
|
|
|
|
2.
Wang M. Key technologies of GNSS/INS/VO deep integration for UGV navigation in urban canyon.
Proceedings of the 11th Asian Control Conference,2017:2546-2551
|
CSCD被引
1
次
|
|
|
|
3.
Xu H W. An airborne LiDAR/INS integrated navigation algorithm based on fuzzy controlled SIFT.
Proceedings of the 2017 International Technical Meeting of the Institute of Navigation,2017:313-326
|
CSCD被引
1
次
|
|
|
|
4.
Yuan G M. A variable proportion adaptive federal Kalman filter for INS/ESGM/GPS/DVL integrated navigation system.
Proceedings of the 4th International Joint Conference on Computational Sciences and Optimization,2011:978-981
|
CSCD被引
1
次
|
|
|
|
5.
钱进. 改进的联合Kalman滤波及其在组合导航中的应用.
火力与指挥控制,2009,34(7):142-144
|
CSCD被引
2
次
|
|
|
|
6.
Xu H W. Fault detection for multi-source integrated navigation system using fully convolutional neural network.
IET Radar, Sonar & Navigation,2018,12(7):774-782
|
CSCD被引
8
次
|
|
|
|
7.
Gao W. A strapdown inertial navigation system/Beidou/Doppler velocity log integrated navigation algorithm based on a cubature Kalman filter.
Sensors,2014,14(1):1511-1527
|
CSCD被引
10
次
|
|
|
|
8.
何伟. 基于联邦卡尔曼滤波的组合导航定位算法.
火力与指挥控制,2012,37(8):147-150
|
CSCD被引
1
次
|
|
|
|
9.
高军强. 基于因子图的车载INS/GNSS/OD组合导航算法.
系统工程与电子技术,2018,40(11):2547-2554
|
CSCD被引
14
次
|
|
|
|
10.
Indelman V. Information fusion in navigation systems via factor graph based incremental smoothing.
Robotics and Autonomous Systems,2013,61(8):721-738
|
CSCD被引
34
次
|
|
|
|
11.
Zeng Q. An improved multi-sensor fusion navigation algorithm based on the factor graph.
Sensors,2017,17(3):641-656
|
CSCD被引
13
次
|
|
|
|
12.
王慧哲. 基于因子图的无人机全源导航关键技术研究.
导航与控制,2017,16(2):1-5
|
CSCD被引
5
次
|
|
|
|
13.
吕瑞. 利用先验点图模型的SLAM后端优化算法.
武汉大学学报(信息科学版),2014,39(6):745-749
|
CSCD被引
2
次
|
|
|
|
14.
Chiu H. Robust vision-aided navigation using sliding-window factor graphs.
Proceedings of 2013 IEEE International Conference on Robotics and Automation,2013:46-53
|
CSCD被引
1
次
|
|
|
|
15.
Crouch M S.
Dynamic graphs in the sliding-window model,2013
|
CSCD被引
2
次
|
|
|
|
16.
秦永元.
卡尔曼滤波与组合导航原理,1998:277-281
|
CSCD被引
1
次
|
|
|
|
17.
Indelman V. Factor graph based incremental smoothing in inertial navigation systems.
Proceedings of the 15th International Conference on Information Fusion,2012:2154-2161
|
CSCD被引
2
次
|
|
|
|
18.
Pan J X.
Growth curve models and statistical diagnostics,2002
|
CSCD被引
11
次
|
|
|
|
19.
Elisha Y B. Active online visual-inertial navigation and sensor calibration via belief space planning and factor graph based incremental smoothing.
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2017:2616-2622
|
CSCD被引
1
次
|
|
|
|
20.
Liu H Y. Comparison of inverse Wishart and separation-strategy priors for Bayesian estimation of covariance parameter matrix in growth curve analysis.
Structural Equation Modeling: A Multidisciplinary Journal,2016,23(3):354-367
|
CSCD被引
1
次
|
|
|
|
|