帮助 关于我们

返回检索结果

数据智能:趋势与挑战
Data intelligence: Trends and challenges

查看参考文献352篇

吴俊杰 1,2,3   刘冠男 1   王静远 4,2 *   左源 1   部慧 1   林浩 1  
文摘 随着大数据和人工智能的兴起,数据智能(data intelligence)逐渐成为学术界和产业界共同关注的焦点.数据智能具有显著的大数据驱动和应用场景牵引两大特征.其融合场景内外的多源异质大数据,利用大规模数据挖掘、机器学习和深度学习等预测性分析方法和技术,提取数据中蕴含的有价值的模式,并用于提升复杂实践活动中的管理与决策水平.本文指出了推动数据智能实现迭代发展的三维要素:数据、算法和场景,然后围绕这三大要素介绍了数据智能的前沿热点、发展趋势和存在挑战,特别对数据智能与管理学交叉的研究与应用问题进行了较为深入的探索.论文还尝试给出一些具有前瞻性的观点或评论,一来希望为有兴趣进入数据智能领域的读者提供指引,二来希望能够在管理同行中起到拋砖引玉之效.
其他语种文摘 With the unprecedented development of big data and artificial intelligence,data intelligence has emerged as a focal point in both academia and industry.It features in a set of predictive data analytics methods gathered in a big-data driven and applications oriented manner,including data mining,machine learning,deep learning,etc.It aims to extract valuable patterns from big data generated inside and outside targeted application scenarios so as to enhance real-life management and decision-making levels.This paper thus focuses on introducing the recent advances in data intelligence,which is formulated as a cyclic system including three naturally integrated and mutually functional dimensions: Data,algorithms,and scenarios.We discuss the hot topics,growing trends,as well as research challenges in data intelligence,with our own comments and opinions aiming to provide guidance for entering the area of data intelligence and arouse peer discussions on this exciting field.
来源 系统工程理论与实践 ,2020,40(8):2116-2149 【核心库】
DOI 10.12011/1000-6788-2020-0027-34
关键词 数据智能 ; 管理与决策 ; 大数据 ; 人工智能 ; 物联网
地址

1. 北京航空航天大学经济管理学院, 北京, 100191  

2. 北京航空航天大学, 大数据科学与脑机智能高精尖创新中心, 北京, 100191  

3. 城市运行应急保障模拟技术北京市重点实验室, 城市运行应急保障模拟技术北京市重点实验室, 北京, 100191  

4. 北京航空航天大学计算机学院, 北京, 100191

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 社会科学总论;自动化技术、计算机技术
基金 国家重点研发计划重点专项 ;  国家自然科学基金 ;  中国博士后科学基金
文献收藏号 CSCD:6793963

参考文献 共 352 共18页

1.  Bizer C. The meaningful use of big data: Four perspectives-four challenges. ACM Sigmod Record,2012,40(4):56-60 CSCD被引 5    
2.  Cattell R. Scalable sql and nosql data stores. ACM Sigmod Record,2011,39(4):12-27 CSCD被引 34    
3.  Ngiam J. Multimodal deep learning. Proceedings of the 28th International Conference on Machine Learning (ICML-11),2011:689-696 CSCD被引 9    
4.  Provost F. Data science and its relationship to big data and data-driven decision making. Big Data,2013,1(1):51-59 CSCD被引 28    
5.  陈国青. 管理决策情境下大数据驱动的研究和应用挑战——范式转变与研究方向. 管理科学学报,2018,21(7):1-10 CSCD被引 38    
6.  Lecun Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE,1998,86(11):2278-2324 CSCD被引 2289    
7.  Elman J L. Finding structure in time. Cognitive Science,1990,14(2):179-211 CSCD被引 298    
8.  Scarselli F. The graph neural network model. IEEE Transactions on Neural Networks,2008,20(1):61-80 CSCD被引 314    
9.  Vaswani A. Attention is all you need. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems,2017:6000-6010 CSCD被引 16    
10.  Devlin J. Bert: Pre-training of deep bidirectional transformers for language under-standing. arXiv: 1810.04805,2018 CSCD被引 128    
11.  Williams M A. Transmutations of knowledge systems. Principles of Knowledge Representation and Reasoning,1994:619-629 CSCD被引 1    
12.  Van Der Aalst W. Data science in action. Process Mining,2016:3-23 CSCD被引 2    
13.  Negash S. Business intelligence. Handbook on Decision Support Systems 2,2008:175-193 CSCD被引 1    
14.  Atanasov P. Distilling the wisdom of crowds: Prediction markets vs. prediction polls. Management Science,2016,63(3):691-706 CSCD被引 1    
15.  Chittilappilly A I. A survey of general-purpose crowdsourcing techniques. IEEE Transactions on Knowledge and Data Engineering,2016,28(9):2246-2266 CSCD被引 14    
16.  Von Ahn L. Designing games with a purpose. Commun ACM,2008,51(8):58-67 CSCD被引 6    
17.  Wang J. Crowder: Crowdsourcing entity resolution. Proceedings of the VLDB Endowment,2012,5(11):1483-1494 CSCD被引 16    
18.  Tong Y. Slade: A smart large-scale task decomposer in crowdsourcing. IEEE Transactions on Knowledge and Data Engineering,2018,30(8):1588-1601 CSCD被引 7    
19.  Zhang X. Truthful incentive mechanisms for crowdsourcing. 2015 IEEE Conference on Computer Communications (INFOCOM),2015:2830-2838 CSCD被引 2    
20.  Alam S L. Temporal motivations of volunteers to participate in cultural crowdsourcing work. Information Systems Research,2017,28(4):744-759 CSCD被引 2    
引证文献 30

1 肖进 代价敏感的客户流失预测半监督集成模型研究 系统工程理论与实践,2021,41(1):188-199
CSCD被引 4

2 高明 基于新型空间注意力机制和迁移学习的垃圾图像分类算法 系统工程理论与实践,2021,41(2):498-512
CSCD被引 7

显示所有30篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号